OUTLINE
 or
 THR METHOD OF CONDUCTING

 A TRIG0N0METRICAL SURVEY,

 A TRIG0N0METRICAL SURVEY,}FOR THE FORMATION OF

MILITARY RECONNAISSANCE, LEVELLING, ETC.;

WITH THE MOST USEFUL PROBLEMS

IM
GEODESY AND PRACTICAL ASTRONOMY,
and formolex and tables for facilitating their calculation.

By CAPTAIN FROME, Royal Engineers, F.R.A.S. and Assoc.Inst.C.E. lath bubveyor-gimbral op south atgtrahia.

SECOND EDITION, REVISED AND ENLARGED, WITH AN ADDITIONAL CHAPTER UPON COLONIAL SURVEYING, as adaptid to thr maring out or waste land.

LONDON :
JOHN WEALE, 59, HIGH HOLBORN.
1850.

LONDON:
GBORGE WOODFALL AND SON,
ANGEL COORT, BKINNER BTREET

Digltred by Google

PREFACE
TO THE FIRST EDITION.

The following pages were drawn up for the use of the junior officers of the Royal Engineers, and those of the Honourable East India Company's Service, in their course of instruction in Trigonometrical Surveying and Practical Astronomy at this establishment, of which branch of their studies I have for some time had the superintendence.

My original intention was to have had them lithographed for distribution among the officers; but I have been since led to the resolution of publishing them in their present form, from their having swelled to a size beyond what I at first contemplated; and also from the total want experienced, during the period occupied in compiling them, of any practical English work on Geodesical Operations, extending beyond the mere elementary steps of Land Surveying. Of this class there are several very useful publications, containing instruction in all the necessary detail, to some of which references are made for information respecting the preliminary knowledge of the construction and use of the instruments most generally employed, as well as to the French authors on Geodesy, whose works I have consulted.

Of the extensive and scientific Geodesical Operations described in these latter works, the present Treatise professes to give nothing beyond a brief outline, as their detailed account would be far too voluminous to be condensed in so small a compass.

The cadets at Woolwich and Addiscombe are taught the use of the Chain and Theodolite, and to calculate the contents of the different portions into which the ground is divided by natural and artificial boundaries; they are also rendered conversant with Plane Trigonometry and Mensuration, and with sufficient Spherical Trigonometry for the solution of the ordinary cases of Spherical Triangles. Such preliminary knowledge is consequently assumed as being already acquired. It is, however, in the power of any individual to make himself master of the necessary theoretical part of this knowledge, by the study of one or other of the numerous excellent works on Trigonometry and Mensuration; and the practice of Land Surveying can be acquired in a few weeks in the Field, under any competent Instructor, or even without this assistance, by the careful study of some elementary work on the subject.

[^0]
PREFACE

TO THE SECOND EDITION.

Is consequence of finding, on my recent return to England, that this work had been for some time out of print, and that considerable portions had been extracted by different authors, a second edition has been prepared, in which, beside many alterations, improvements, and omissions of parts since deemed not sufficiently practical, will be found a separate chapter devoted to Surveying in the Colonies, with reference to the marking out of waste lands for future occupation; the result of nearly ten years' experience obtained during the superintendence of the Survey of South Australia.

Brighton,

 April, 1850.Digitized by GOOgle

TABLE OF CONTENTS.

CHAPTER I.

General Outline of the System of Carrying on a Trigonometrical Page Survey

CHAPTER II.

MRASURBMENT OF A BASE LINR.

Description of the different Methods that have been adopted to ensury its correct Measurement.-Combined Iron and Brass Rods used on the Ordnance Survey.-Visual Contact with reading Microscopes.-Reduction of a Base measured on any elevated Plain to its Value at the Level of the Sea.-Prolonging and verifying a Measured Base by Triangulation

CHAPTER III.
triangulation.
Choice of Stations.-Method of rendering distant Stations visible-by Reflection of the Sun's Rays-Argand Burners-Drummond's Light.Method of increasing the Length of the Sides of the first Triangles directly from the Measured Base.-Secondary Triangles.-Assumed Base.-Instruments used for observing Angles on the Continent and in England.-Reduction to the Horizon.-Spherical Excess.-Reduction to the Centre.Adjustments of a Theodolite.-Method of discovering lost Stations.Laying down a Triangulation upon Paper.-Position of Trigonometrical Stations also ascertained by astronomical Observation

CHAPTER IV.

INTERIOR PILLING-IN OF A SURVEY, EITHER ENTIRELY OR PARTIALLY, BY MEASUREMENT.

Method of Filling-in the Detail entirely by Measurement, as practised on the Ordnance Survey.-Levelling Marks and Forms of Field-Books, \&c.Measurement of Roads by the Chain and Theodolite.-Computing the Contents of Enclosures directly from the Field-Book.-Filling-in the Interior, partly by Sketching.-Road Surveying.-Variation of the Com-pass.-Sketching between Trigonometrical Points and Measured Lines.Practical Methods of avoiding Obstacles and determining inaccessible Heights and Distances in the Field.-Station Pointer.-Surveys for Railways

CHAPTER V.

MILITARY RECONNAISSANCE AND HINTS ON SKBTCHING GROUND.

Abstract

Particular objects of a Reconnaissance under different circumstances.Method of commencing Military Sketch.-Portable Instruments best adapted for sketching Ground.-Methods of delineating the features of Ground with a Pen or Pencil.-Vertical System.-Horizontal.German Methods of producing a Mathematical Representation of the Slopes of Ground by a "Scale of Shade," and also by a combination of Vertical and Horizontal Lines-Horizontal Contours-Geological Features. -"Clinometer" for Measuring the Angles of Slopes.-Topographical Sketches.-Judgment of Distances.-Military Reconnaissance of an Enemy's Works.-Conventional Signs . 56

CHAPTER VI.

LEVELLING.

Correction for Curvature of the Earth-for Refraction.-Average Amount of these Corrections.-Reciprocal Angles of Depression and Elevation for determining the Amount of Refraction at any particular period.-Method of taking Sections of Ground with a Theodolite.-Cross Sections.-Trial Bections.-Check Levels.-Spirit Level and its Adjust-ments.-French Watcr Level.-Boning Rods.-Reflecting Level.-Method of taking Sections with the Spirit Level, or other Instrument adapted for tracing Horizontal Lines. - Plotting Sections. - Sectio-planography. Sections for Railways.-Method of Tracing Contour Lines.-System of Contouring practised on the Ordnance Surveys.-Data afforded by Contour Plans for determining the most available directions for Roads, Railways, Lines of Drainage, \&c.-Construction of Models.-Problems determined by Contoured Plans.

CHAPTER VII.

LEVELLING CONTINDED.

$$
\begin{aligned}
& \text { Method of ascertaining Altitudes with the Mountain Barometer.- } \\
& \text { Aneroid.-Substitute for the Barometer.-Determination of Altitudes by } \\
& \text { the Temperature of Boiling Water } 100
\end{aligned}
$$

CHAPTER VIII.
SHADING AND RNGRAVING TOPOGRAPHICAL PLANS.

$$
\begin{aligned}
& \text { Vertical Disposition of Light_Oblique Light.-Objections to this } \\
& \text { Method.-Conventional System, partaking of both.-Anaglyptograph } \\
& \text { Engraving } 115
\end{aligned}
$$

CHAPTER IX.
 COLONIAL SURVEYING.

Abstract

Difference between the Objects in view in the Survey of a Cultivated and that of a new Unsettled Country.-First Operations.-Preliminary Ex-ploration.-Objects to be principally considered.-Sites of Townships.Main Lines of Communication.-Guides for marking on the Ground the Divisions of Properties.-Size of these Divisions.-Precautions to be observed to secure to the Public Rights of Road, \&cc.-Necessity for Extensive Surveys on the First Settlement of a New Colony.-Deviations from General Rules in laying out Sections.-Frontages on, and Access to Rivers and Main Roads.-Sectional Roads.-Monopoly of Water to be guarded against. -Sections laid out in Broken Irregular Ground.-Statistical and other Information to be fully afforded to Settlers.-Marking Boundaries of Sections and Roads.-Reservation of Rights of Road.-Natural Features of Ground.-Geological and Mineralogical Specimens, and Meteorological Register, \&c.-Usual Method of marking Regular Figures upon the Ground. -Necessity for a Triangulation to conduct these Operations with any degree of accuracy when upon an extended Scale.-Advantage of Carrying it on rather in advance of the Sectional Surveys.-Other Uses of the Triangula-tion.-District Surveyors.-Surveying by Contract.-Rate of Progress and Cost per Acre of the Sectional Survey and Marking out Roads.-Cost of the Triangulation.-Method of Survey pursued in the Canterbury Settlement, New Zealand.-Temporary Division of Land for pastoral Purposes. -Territorial Division of Counties, Hundreds, \&c.-Remarks on Exploring Expeditions.-Method of Proceeding.-Objects in View, and collateral Information to be obtained

CHAPTER X.

GRODESICAL OPRRATIONS CONNECTED WITH A TRIGONOMBTRICAL SURVEY.

Figure of the Earth.-Measurement of an Arc of the Meridian.-Of a Parallel.-French Standard of weights and measures obtained from the measurement of an Arc of the Meridian between Dunkirk and Barcelona. -Popular Account of the method of conducting these Measurements.Correct determination of distance between two points whose latitude and longitude are known.-Convergence of Meridians.-Radius of Curvature.Calculation of Azimuths as practised on the recent Survey of the North American Boundary.-Latitude and Longitude of Stations with reference to those of places already determined.-Variation of the Compass, and marking out a Meridian Line.-Projections of the Sphere.-Projection adapted to limited portions of the Globe

CHAPTER XI.

PRACTICAL ASTRONOMY.
Sextant and Repeating Circle, \&c.-Definition of Terms.-Division of Time.-Solar and Sidereal Day.-Observations of the Sun and Stars . . 162

PROBLEMS.
I.-To convert Sidereal Tine into Mear Solar Tine, and the Reveree 173
II.-To determine the Amount of the several Corbections for Repraction, Parallat, \&e. 175
III_-To determine the Latitude.

1. By Observations of a circumpolar Star at the time of its Upper andLower Culminations.
2. By Meridional Altitudes of the Sun, or a Star whose declination isknown, involving the Reduction to the Meridian.
3. By the Altitude of the Pole Star at any time of the day.
4. By an Altitude of the Sun, or a Star, out of the Meridian, the correcttime of Observation being known.
5. By two observed Altitudes of the Sun or a Star, and the interval of timebetween them; or the difference, or sum of their Azinuths.
6. By Transit Observations on the Prime Vertical 180
IV.-To find the Local Time.1. From single, or absolute, Altitudes of the Sun, or a Star whose declina-tion, as also the latitude of the place of observation, are known.
7. By equal Altitudes of a Star, or the Sun, and the Interval of Time be- tween the Observations 195
V.-To determine the Longitude.
8. By the Comparison of local Time with that shown by a Chronometer fromwhich the Time at some fixed Meridian is known.
9. By Signals.
10. By the Transmission of Chronometers between Stations.
11. By the Eclipses of Jupiter's Satellites, and the Eclipses of the Sun and Moon.
12. By Lunar Observations.
13. By the Method of Moon-culminating Stars.
14. By Occultations of fixed Stars by the Moon 199
VI.-To find the Direction of a Meridian Line, and the Variation of the Compass.
15. By the Azimuth of any Celestial Object.
16. By the Amplitude of the Sun at his rising or setting.
17. By equal Altitudes ard Azimuths.
18. By a Transit Instrument when properly adjusted in the Plane of the Meridian 219

TABLES OF USE IN THE FOREGOING PROBLEMS.

Page1. To convert Sidereal into Mean Solar Time 228
2. To convert Mean Solar into Sidereal Time 229
3. To convert Space into Time, and vice vers \hat{A} 230
4. Table of Refractions 231
5. Contraction of semi-diameters of the Sun and Moon from Refraction 234
6. Semi-diameter of the Sun 234
7. Augmentation of semi-diameter of the Moon, with her increase in altitude 235
8. Parallax of the Sun 236
9. Reduction of the Moon's equatorial horizontal parallax for any latitude 237
10. Parallax of the Planets in altitude 238
11. Dip of the Sea Horizon 239
12. Dip of the Horizon at different distances $2: 39$
13. Reduction to the Meridian 240
14. Equation of equal altitudes 241
15. Length of a second of a degree of latitude and longitude 242
16. Corrections for curvature and refraction 243
17. Reduction upon each chain's length for different vertical angles 244
18. Ratio of slopes for different vertical angles 244
19. Comparative scale of Thermometers 245
20. Comparative scale of Barometers 246
Form for registering Meteorological Observations 247
Description of the "Pediometer" and " Computing Scale," for facilitating the computation of areas 248
Form of Report on the Military Reconnaissance of a Road. 252

ILLUSTRATIONS.

No. 1. Dingrams-to face page 36.
No. 2. Ditto. ditto.
No. 3. Field Book. ditto.
No. 4. Content Plot and Diagram-ditto.
No. 5. Scale of Shade for representing Slopes of Ground. -to face page 60.
No. 6. Anaglyptograph Engrating for Topographical Draw ing-to face page 117.
No. 7. Spechiens of the Vertical and Horizontal Stile of Sketching Ground-to face page 59.
No. 8. Method of tracing Contodrs
No. 9. Specimen of Contouring
$\}$ to face page $95,8 \mathrm{c}$.

And 213 WOOD-CUTE.

TRIGONOMETRICAL SURVEY,

BTC.

CHAPTER I.

-
 GENERAL OUTLINR OF THE SYETEM OF CARRTING ON A TRIGONOMETRICAL BURVEY.

The basis of an accurate survey, undertaken for any extensive geodesical operation, such as the measurement of an arc of the meridian, or of a parallel, or the formation of a geographical or territorial map, showing the positions of towns, villages, \&c., and the boundaries of provinces and counties, or a topographical plan for military or statistical purposes, must necessarily be an extended system of Trianguilation, the preliminary step in which is the careful measurement of a base line on some level plain :-at each extremity of this base, the angles are observed between several surrounding objects previously fixed upon as trigonometrical stations; and also, when practicable, those subtended at each of these points by the base itself. The distances of these stations from the ends of the base line and from each other are then calculated, and laid down upon paper, forming so many fresh bases from whence other trigonometrical points are determined, until the entire tract of country to be surveyed is covered over with a net-work of triangles of as large a size as is proportioned to the contemplated extent of the survey, and the quality and power of the instruments employed. Within this principal triangulation secondary triangles are formed, and laid down in like manner by calculation; and the interior detail is filled up between
these points, either entirely by measurement with the chain and theodolite, or by partial measurement [principally of the roads], and by sketching the remainder with the assistance of some portable instrument. The degree of accuracy and minuteness to be observed in this detail, will of course determine which of these methods is to be adopted-the latter was practised on the Ordnance Survey of the South of England, which was plotted on the scale of 2 inches to 1 mile, and reduced for publication to that of 1 inch; but on the Survey of Ireland, and that of Scotland and the North of England now in progress, sketching has been entirely superseded by chain measurement, even in the most minute particulars, and the undulations of the surface of the ground are represented with mathematical accuracy by horizontal contour lines traced by actual levelling at equidistant vertical intervals, the whole survey being laid down to the scale of 6 inches to 1 mile. In the survey of only a limited extent of country, there does not exist the same absolute necessity for a triangulation, even though a considerable degree of accuracy should be required; this will appear evident, from the consideration that in every practical operation some amount of error (independent of the errors of observation) is to be expected-sometimes a definite quantity dependent upon the means employed; sometimes a quantity varying in amount with the extent of the operation.

In all angular measurements, the errors to be expected evidently depend upon the quality of the instruments made use of, and are altogether irrespective of the space over which the work extends. In linear measurements, on the contrary, the probable error is some proportional part (dependent upon the circumstances and the means employed) of the distances measured. So long, then, as the extent of the survey, and the scale upon which it is to be laid down, are such that the probable error attendant upon ordinary chain measurement of the largest figures would be imperceptible on the plan, no triangulation is necessary on the score of accuracy alone, though in many cases even of this nature it would be found in the end a saving both of time and expense.

In a new and unsettled country, particularly if flat and thickly wooded, the outlay that would be required, and the time that would be occupied by an accurate triangulation, would probably
prevent its being attempted, at all events in the first instance. If only a general map upon a very small scale is required, the latitude and longitude of a number of the most conspicuous stations can be determined by astronomical observations, and the distances between them calculated, to allow of their positions being laid down as correctly as this method will admit of, within which, as within a triangulation, the interior detail can be filled up. In surveying an extended line of coast, where the interior is not triangulated, no other method presents itself; and a knowledge of practical astronomy therefore becomes indispensable in this, as in all extensive geodesical operations. A topographical survey further requires that some of the party employed upon it should be practically versed in the general outlines of geology, as a correct description of the soil and mineral resources of the different parts of every country forms one of its most important features. The heights of the principal hills, and of marked points along the ridges, plains, valleys, and watercourses above the level of the sea, should also be determined, which, in a survey of no great pretensions to correctness in minute detail, may be ascertained with tolerable accuracy by means of the mountain barometer, or even by observing the temperature at which water boils at different stations.

A sketch of a certain tract of country, on a far larger scale than that of most general maps, is constantly required on service, for the purpose of showing the military features of the ground, the relative positions of towns and villages, and the direction and nature of the roads and rivers comprised within its limits. This species of sketch, termed a " Military Reconnaissance," approaches in accuracy to a regular survey, in proportion to the time and labour that is bestowed upon it. Having thus adverted briefly to the progressive steps in the different species of surveying, they will each be treated of more in detail in their proper order.
The system of forming the " net-work of triangles" alluded to, of as large a size as is consistent with the circumstances under which the survey is undertaken, within and dependent upon which the secondary triangulation and all the interior details are included, is to be considered as the working out of a general principle to be
borue in mind in all topographical and geodesical operations, the spirit of which is as much as possible to work from whole to part, and not from part to whole.

By the former method errors are subdivided, and time and labour economised; by the latter, the errors inseparable from even the most careful observations are constantly accumulating, and the work drags on at a slower rate and an increasing expenditure.

CHAPTER II.

MEASUREMENT OF A BABE LINE.

In fixing upon an appropriate site for the measurement of a base line, a level plain should obviously be selected where both ends of the base would be visible from the nearest trigonometrical points. Where extreme accuracy has been required, steel chains, glass, deal, and platinum rods have at different times been used for the purpose of determining its length; but each of these units of measurement, whichever is preferred, must be supported so as to ensure its being laid perfectly level. The whole thus forms a portion of a great circle, which has ultimately to be reduced to its proper measure at the level of the sea at one mean temperature.

In measuring a base for the topographical survey of any small detached portion of ground, it will be sufficient for ordinary purposes to measure its length carefully, two or three times, with a chain which has been compared with a standard $*$, and if necessary from the irregularity of the ground to take an accurate section along the line (which should be laid out with a theodolite, between marks at each extremity), from which it can be reduced, by calculation, to its true horizontal value. The length of a base, which has subsequently to be determined with the most minute accuracy, by means of glass rods, compensation bars, or other contrivance, is generally first measured two or three times in this manner.

The exact measurement of a base is perhaps the most difficult and the most important part of a trigonometrical survey, as upon its accuracy that of every subsequent proceeding depends. In the account of this operation on the Trigonometrical Survey of England and Wales, published in 1801, will be found detailed accounts of the base measured on Hounslow Heath, in 1784, with

[^1]Ramsden's steel chain, at first intended solely for the purpose of connecting by triangulation the Observatories of Paris and Greenwich, but afterwards made the first step in the trigonometrical survey of England. This base was measured a second time with prepared deal rods *, and again by a combination of these two methods, the mean of the three valuations being 27404.0137 feet at the level of the sea. The details of the base of verification (i. e. the actual measurement of the side of a remote triangle, whose length had been previously obtained by calculation) in Romney Marsh, in 1787, are also given in the same work, as well as the remeasurement of the original base on Hounslow Heath, in 1791, and of another base of verification on Salisbury Plain, in 1794, which is stated to have corresponded exactly with its mean length, as obtained by calculation in three different triangles.

A detailed account has recently \dagger (1847) been drawn up by Captain Yolland, R.E., of the mode adopted by General Colby to obtain the accurate value of the base measured on the Ordnance Survey of Ireland, at Loch Foyle, in the county of Londonderry, in which work will also be found a quantity of scientific information connected with the principal triangulation. The principles of the contrivance, in which it differs from all other methods that have preceded it, consist in always preserving, by a mechanical compensation obtained by the use of two metals having different powers of expansion and contraction, exactly the same distance between two points at the extremities of the compensation bars, instead of allowing, as had been hitherto done, for this expansion or contraction, according to the temperature at which each rod was laid, and in obtaining a visual instead of an actual contact of

[^2]the rods. This will be explained by the following short description of the compensation bars and the method of using them.

Two bars, one of iron and the other of brass, 10 feet long, placed parallel to each other, were riveted together at their centres, it having been previously ascertained, by numerous experiments, that they expanded and contracted in their transitions from cold to heat, and the reverse, in the proportion of three to five. The latter was coated with some non-conducting substance to equalise the susceptibility of the two metals to change of temperature; and across each extremity of these combined bars was fixed a tongue of iron, with a minute dot of platinum, almost invisible to the naked eye, and so situated on this tongue, that, under every degree of expansion or contraction of the rods, the dots at each end always remained at the constant distance of 10 feet. This will be better understood by reference to the sketch below.

A is the iron bar (about five-eighths of an inch wide and one and a half deep); the expansion of which is represented by three; B the brass bar (of the same size), the expansion of which is five, the two being riveted together at the centre $\mathrm{C} ; \mathrm{DE}$ and $d e$ are the iron tongues pinned on to the bars, so as to admit of their expansion, with the platina dots at D and d. The tongues are by construction made perpendicular to the rods at a mean temperature of 60° Fahrenheit, and the expansion taking place from their common centre, when A expands any quantity which may be expressed by three, B expands at the same time a quantity equal to five, and the position of the tongues is changed to $\mathrm{DF}, d f$, the dots D and d remaining unalterably fixed at the exact distance of ten feet. It is evident from this construction, that the dots at the extremities of these bars could not, if desired, be brought either into actual contact or coincidence; but a more correct plan was adopted, which consisted in laying each rod so that the dot at its extremity should always be at a fixed distance from that at the end of the next rod. This was effected by means of powerful
microscopes, attached to the end of similar short compound bars *, 6 inches long, mounted on a stand, by which means they could be laid perfectly horizontal by a spirit level, the microscopes in these bars occupying the position of the dots on the longer rods. These dots, after the rods had all been carefully levelled, were brought exactly under the microscopes by means of three micrometer screws attached to the box in which each rod was laid, so that it could be moved to either side, backwards or forwards, elevated or depressed, as required, the rods being laid on supports equidistant from the centre of the box, that they might always have the same bearing. The point of starting was a stone pillar, with a platina dot let into its centre, with a transit instrument placed over it, by which the line was laid out with the greatest precision, with the assistance of sights at each end of the bars; an average of about 250 feet being completed in one day, and five boxes, giving a length of 52 feet, being levelled and laid together.

About 400 feet of this measured base was across the river Roe, and clumps of pickets were driven at intervals of about 5 feet 3 inches apart from centre to centre, by a small pile engine, on the heads of which the boxes containing the compound rods rested. At the end of each day's work a triangular stone was sunk at the end of the last bar laid, with a cast-iron block fitting over it, having a brass plate with a silver disk let into the middle of the brass, which was adjustable by means of serews. This disk was brought exactly under the focus of the extreme microscope, and served as a starting point the following day, a sentinel being always left in charge of this stone, which was further secured by a wooden cover screwed over it.

The total length of the measurement of this base amounted to about 8 miles; 2 miles were subsequently added by a method described in the next page, making the entire distance between the two extremities rather more than 10 miles.

[^3]Detailed descriptions of the various methods that have been at different times adopted to insure the correct measurement of base lines on the Continent, may be found in all standard works on geodesical operations*. A popular account of the mode of conducting these measurements, and of the nature of the rods, \&c., used, is also given in Mr. Airy's "Figure of the Earth," in the "Encyclopædia Metropolitana," commencing at page 206.

A base measured on any elevated plain is thus reduced to its proper measure at the level of the sea.

Call A B the measured base at any elevation
A a above the level of the sea . . B $a b$ its value at this level . . . b
$\mathrm{C} b$ the radius of the earth . . R And the altitude above the sea $\mathrm{A} a \cdot h$, as ascertained by levelling, or by the barometer.
Then $\mathbf{R}+\boldsymbol{h}: \mathbf{R}:: \mathbf{B}: b . \& b=\frac{\mathbf{R} \cdot \mathbf{B}}{\mathbf{R}+\boldsymbol{h}}$
And $B-b$ the difference of the measured and reduced base $=\mathrm{B}-\frac{\mathrm{B} . \mathrm{R}}{\mathrm{R}+h}=\frac{\mathrm{B} . h}{\mathrm{R}+\boldsymbol{k}}$.

The radius of the earth may be considered $=21008000$ feet; if, then, the \log of the base, in feet, be added to the \log of the altitude, and the log of the sum of the radius and altitude be subtracted therefrom, the remainder will be the \log of a number to be

[^4]deducted from the measured base, to reduce it to its value at the level of the sea. This correction, though generally trifling, is not to be neglected when the base is measured on ground of any considerable elevation.

Mr. Airy, in page 198 of the "Figure of the Earth," in the "Encyclopædia Metropolitana," gives this formula :-" If r be the earth's radius, or the radius of the surface of the sea (which is known nearly enough), h the elevation, the measured lengths must be multiplied by the fraction $\frac{r}{r+h}$ or $1 \frac{h}{r}$, or they must be diminished by the part $\frac{h}{r}$ of the whole. If the surface slopes uniformly, the mean height may be taken; if it is very irregular it may be divided into several parts."

The reduced length $a b$ of the base
$A B$ is thus found, and if the length of the chord is required, it is found by subtracting $\frac{\Delta B}{24 r^{2}}$.

Beside the marks at the extremities of a base line-which, if it is to form the groundwork of a survey of considerable extent, should be constructed so as to be permanent, as well as minuteintermediate points should be carefully determined and marked during the progress of the measurement by driving strong pickets, or sinking stones into the ground, with dots upon a plate of metal, or some other indication of the exact termination of the chain, clearly defined upon them. These marks serve for testing the accuracy of the different portions, and reciprocally comparing them with each other. It has been already remarked, that the length of the base on the Ordnance Survey of Ireland was not obtained entirely by measurement, an addition of two miles having been made
to its measured length by calculation. This calculation was also contrived to answer the purpose of verifying the measurement of intermediate portions of the base between marks left for the purpose, as alluded to in the last paragraph; and which will be explained by reference to the figure given below, in which $A B$ represents the portion of the base actually measured, and BC, that to be added by calculation, for the purpose of extending the base to \mathbf{C}, to obtain a more eligible termination.

The points E and D have been marked during the measurement, and are thus made use of:-

The stations \mathbf{F} and \mathbf{G} are selected, so that the angles at \mathbf{E} may be nearly right angles, and the points themselves nearly equidistant from the line, and about equal to AE. Similar conditions determine the positions of H, I, K, and L. At A the whole of the objects visible are most accurately observed with a large theodolite, which is then taken to the other points on the line, as well as
those selected on either side of it, where all the angles are measured. From AE, then, and the three observed angles, GE and EF are determined, from each of which in the triangles GED and DEF the side ED is obtained, the distances thus found forming two checks on its measured length; ID and DH are in like manner calculated from AD and also from ED as bases, and each of these again furnish data for the determination of DB . Lastly, $B L$ and $B K$ are found from $A B$, and also from $E B$; from the mean results of which BC , the required addition to the measured base, is obtained.

Even if the entire base had been measured, the above is an excellent method of verifying the accuracy of the intermediate component parts; and is also a test of the instrument used for measuring the angles. The stations $\mathrm{H}, \mathrm{K}, \mathrm{L}$, \&c., will also answer for minor trigonometrical points, and will be found useful in the course of the work.

The next process, as has been stated, is the Triangulation, which, combined with the measurement of a base line, just described, forms the preliminary step, not only in a correct trigonometrical survey, but in the more delicate operations of the determination of the difference of longitudes. between two meridians, such as those of the observatories of Greenwich and Paris, and the measurement of an arc of the meridian to obtain the length of a degree in different latitudes, from whence to deduce the figure and magnitude of the earth.

CHAPTER III.

triangulation.

The most conspicuous stations are selected as trigonometrical points, and are chosen with reference to their relative positions; as the nearer these triangles approach to being equilateral, the less will be the error in the calculation of the sides resulting from any slight inaccuracy in the observed angles.

The base being generally of trifling length, compared with the distances between the points of the principal triangles to be ultimately deduced from it, the sides of these triangles must be from the first gradually increased as rapidly as is consistent with the remark in the previous paragraph, till they arrive at their greatest limit *, determined in an extensive survey by the distance at which these points can be rendered clearly visible. As early as 1822 , the reflection of the sun from a plane mirror was employed in Hanover for the purpose of rendering distant stations visible; and this method was adopted by General Colby and Captain Kater in verifying General Roy's triangulation for connecting the meridians of Paris and Greenwich. The station on Hanger Hill tower could not be seen from Shooter's Hill (only 10 miles distant), owing to the dense smoke of London, but was rendered clearly visible by tin plates attached to the signal post so as to reflect the sun towards the station at stated times on a certain day. The same plan was tried the

[^5]following year at the station on Leith Hill, near Dorking, rendering the station visible at the distance of 45 miles, though the hill itself was never once seen. The utility of thus employing the sun's reflected rays being established by these results, an instrument was invented by Captain Drummond, Royal Engineers, in lieu of the former temporary expedients, for directing the rays upon the station to be illuminated, the description of which will be found in his Paper on the means of facilitating the observations of distant stations, published in the " Philosophical Transactions for 1826," and from whence the above remarks have been taken. In using this "Heliostat" it is only necessary for the assistant, who is posted as near as possible to the station, to keep the enlightened object in the focus of the telescope, and the mirror is adjusted instrumentally so as to always reflect them upon the station and keep it illuminated. But a contrivance was still wanting to produce a light sufficiently brilliant to answer for distant stations at night. Bengal lights had been used by General Roy, which were succeeded by argand lamps and parabolic reflectors, and these again, by a large planoconvex lens, prepared by MM. Fresnel and Arago, and used by the latter gentleman conjointly with General Colby and Captain Kater, and by the light of which a station, distant 48 miles, was observed. The light invented by Captain Drummond, and described in the volume of the "Philosophical Transactions" alluded to, however, far surpassed all previous contrivances in intensity. A ball of lime, about a quarter of an inch in diameter, placed in the focus of a parabolic reflector, and raised to an intense heat by a stream of oxygen gas directed through a flame of alcohol, produced a light eighty times as intense as that given by an argand burner. A station on the hill in the barony of Ennishowen, of great importance, could not be seen from Devis Mountain, near Belfast, and this instrument was consequently sent there by General Colby; and, in spite of boisterous and hazy weather, the light was brilliantly visible at the distance of 67 miles, and would have been so at a much greater distance. Drummond's light might be also made available in determining the difference of longitudes by signals, which will be explained hereafter * but difficulties connected

[^6]with its management, as well as the cost of the apparatus, have prevented its being brought into use on the Ordnance Survey.

It has been already stated that the sides of the principal triangles should increase as rapidly as possible from the measured base. The accompanying sketch will show how this is to be managed without admitting any ill-conditioned triangles.

AB is supposed to be the measured base of 3 miles, or any other length, and C and D the nearest trigonometrical points. All the angles being observed, the distances of C and D from the extremities of the base are calculated with the greatest accuracy. In each of the triangles DAC and DBC, then, we have the two sides and the contained angles to find DC, one calculation acting
mond's on this subject, containing the results of a course of experiments carried on by order of the Trinity Board. The lime in these experiments was exposed to streams of oxygen and hydrogen gas from separate ganometors, instead of passing the oxygen gas through a flame of alcohol, which was done on the survey for the convenience of carriage, though at an increased expense.
as a check upon the correctness of the other. This line, D C, is again made the base from which the distances of the trigonometrical stations \mathbf{E} and \mathbf{F} are computed from D and C ; and the length of EF is afterwards obtained in the two triangles DEF and FEC. In like manner the relative positions of the points $\mathrm{H}, \mathrm{G}, \mathrm{K}$, \&c., are obtained, and this system should be pursued till the trigonometrical stations arrive at the required distance apart.

On the Ordnance Survey, both of England and Ireland, the largest sized instruments, 3 feet in diameter, were used for fixing the principal stations *. The angles at the vertices of the secondary triangles were observed with the second-class theodolites. The sides of these triangles were, on an average, about 10 or 12 miles long, and the intervals between them were divided into small triangles, with sides of from 1 to 3 miles in length; a smaller theodolite, of 7 inches diameter, being used for measuring the angles. All points of the secondary order of triangles, which were fixed upon during the progress of the principal triangulation, were observed with the largest instrument; and a number of the minor stations, mills, churches, \&c., were observed with the se-cond-class theodolites from different stations: thus the connexion between the three classes of triangles was established, and the positions of many of the minor stations which had been determined by calculation from a series

[^7]of small triangles were checked by being made the vertices of larger triangles, based upon sides of those of the second order.

Thus the point E in the figure is determined from the base BC ; and O from both DC and AD, forming a connection between the larger and smaller order of triangles, and constituting a series of checks upon the latter.

The length of the sides of the smallest triangles must depend upon the intended method of filling up the interior. If the contents within the boundaries of parishes, estates, \&c., are to be calculated, the distances between these points must be diminished to one or two miles for an inclosed country, and two or three, perhaps, for one more open. If no contents are required, and the object of the triangulation is solely to ensure the accuracy of a topographical survey, the distances may be augmented according to the degree of minutiæ required, and the scale upon which the work is to be laid down.

The direction of one of the sides of the principal triangles must also be determined with regard to the meridian. The methods of ascertaining this angle, termed its azimuth, will be described hereafter.

It is also advisable not merely to measure the angles between the different trigonometrical points, but to observe them all with reference to certain stations previously fixed upon for that purpose.

If for any cause it has been found advisable to commence the triangulation before the base has been measured, the sides of the triangles may be calculated from an assumed base, and corrected afterwards for the difference between this imaginary quantity and * the real length of the base line; or, if the length of the base is subsequently found to have been incorrectly ascertained, the triangulation may be corrected in a similar manner.

Thus, suppose CB the assumed, and AB the real length of the base-also $E B$ and $A E$ the real distance to the trigonometrical point E , and DB and DC those calculated from the as-
 sumed base, then AE evidently =CD. $\frac{A B}{C B}$, and $E B=B D$. $\frac{A B}{C B}$.

On the Continent, the instrument that has been generally used for measuring the angles of the principal and secondary triangles
is Borda's repeating circle *; but the theodolite is universally preferred in England, and those of the larger description, in their present improved state, are in fact portable Altitude and Azimuth instruments. The theodolite possesses the great advantage of reducing, instrumentally, the angles taken between objects situated in a plane oblique to the horizon to their horizontal values, which reduction, in any instrument measuring the exact angular distance between two objects having different zenith distances, is a matter of calculation depending upon the zenith distances or co-altitudes of the objects observed \dagger. The formula given by Dr. Pearson for this correction when the obliquity is inconsiderable, which must always be the case in angles observed between distant objects on the horizon, is as follows:-

A being the angle of position observed, H and \boldsymbol{h} the altitudes of

[^8]Let \mathbf{O} be the station of the observer, \mathbf{A} and B the two objects whose altitudes above the horizon are not equal; then the angle subtended by them at 0 is $\triangle O B$ measured by $\triangle B$; but if Za, Zb, are each $=90^{\circ}$, then $a b$, and not $\triangle B$, measures the angle $a \mathrm{Z} b$, which is the horizontal angle required. The difference, then, between the observed angle $\triangle \mathrm{OB}$ and $a \mathrm{Zb}$, is the correction to be applied as the reduction to the horison. The horizontal distances between these stations of different elevations may be found from having the reciprocal angles of elevation and depression, and the measured or calculated distances,
 which being considered as the hypothenuse of the triangle, the distances sought are the bases. From these the horizontal angles may be calculated if required.
the two objects, and $n=\sin ^{2}\left(\frac{1}{2} H+h\right)$. tan. $\frac{1}{2} \mathrm{~A}-\sin ^{2}\left(\frac{1}{2} \mathrm{H}-h\right)$. cot $\frac{1}{\frac{1}{2}} \mathbf{A}$. then x (the correction) $=\boldsymbol{n}$. sec. H. sec. h. The value of n is given in tables computed for the purpose of facilitating this calculation for every minute of H and h, and for every ten minutes of A. When the altitudes differ more than 2° or 3° from zero, the following formula is to be used in preference :-

$$
\left.\begin{array}{l}
\operatorname{Sin} \frac{1}{2} Z \\
\text { the reduced angle }
\end{array}\right\}=\frac{\sqrt{ }\left(\sin \frac{1}{2} S-\delta\right) \cdot \sin \left(\frac{1}{2} S-\delta^{\gamma}\right)}{\sin \delta, \sin \delta^{2}} ;
$$

S being the sum of the angle observed, and the two zenith distances; and δ and δ the respective zenith distances of the objects *.

All observed horizontal angles are, however, essentially spherical angles; and in every triangle measured on the surface of the earth, the sum of the three angles must, if taken correctly, be more than 180°. The lines containing the observed angles are in fact tangents to the sphere (supposing the earth to be one), whereas to obtain the three points considered as vertices of a plane triangle, the angles must be reduced to the value of those contained between the chords of the arcs constituting the sides of the spherical triangle. The correction for this spherical excess, though too minute to be applied to angles observed with moderate sized instruments, being completely lost in the unavoidably greater errors of observation, should be however calculated in the principal triangles, which is easily done on the supposition that the area of a spherical triangle, whose sides are immeasurably small compared with the whole sphere, may be considered identical with that of a plane triangle, whose sides are of the same length as those of the spherical, and whose angles are each diminished by one-third of the spherical excess; from which theorem, demonstrated by Legendre, and known by his name, is deduced the

[^9]form $\frac{S}{\mathrm{~B}}$; or for the excess in seconds, $\frac{\mathrm{S}}{\mathrm{R}^{\prime}} \mathrm{R}^{\prime \prime}$: where S denotes the area, and \mathbf{R} the radius of the earth *.

The earth being considered a perfect sphere whose radius is $21,008,000$ feet ; one second of space $=101 \cdot 43$ feet, and $(101 \cdot 43)^{2}$ $=$ the square feet in a square second. $-R$ the radius $=206264,8$ seconds, and the expression becomes $\frac{\text { area in feet }}{(101 \cdot 43)^{2} \times(206264,8)^{2}}$ $\times 206264,8$; or in logarithms, Log area-4,0123486-5,3144251 $=\log$ area $-9,3267737$ for the spherical excess in seconds \dagger.

On the Trigonometrical Survey of England, the spherical excess was constantly calculated, not solely for the purpose of diminishing the observed angles by the amount, but to correct the observations. Thus, in one of the large triangles in Dorsetshire, the sum of the three angles was $0^{\prime \prime} .5$ less than 180°; the calculated spherical excess amounted to $1^{\prime \prime} \cdot 29$, showing an error of $1^{\prime \prime} \cdot 79$ in the observation, and in many of the triangles this error was more considerable. One-third of the error thus found, added to each of the angles, corrects them as angles of a spherical triangle, and onethird of the spherical excess deducted from each of these corrected spherical angles converts them into the angles of a plane triangle ready for calculation, and the sum of whose angles is $=180^{\circ}$, as is seen in the example below.

One-third of the spherical excess has here been deducted from each angle, but it might have been calculated for each separately,

[^10]by reducing the angles of the spherical triangles to the angles formed by the chords. (Woodhouse, page 239; Base du Système Metrique, \&c.) Thus there are three modes of solving the large triangles of a survey, first, by calculating them as spherical triangles with the corrected spherical angles; secondly, by computing them as rectilinear triangles with the angles of the chords; and thirdly, by Legendre's method of reducing each angle by onethird of the spherical excess; this latter method is by far the most expeditious. In the "Base du Système Métrique," the sides of the triangles were computed by all three methods. On the Ordnance Survey they were formerly mostly calculated by the second, and checked by the third, but at present the last of these modes, that by Legendre's formula, is the only one used.

This subject is treated at length in Puissant, vol. i. pages 100, 117 , and 223, and also in the account of the Trigonometrical Survey, in Professor Young's, and Woodhouse's Spherical Trigonometry; and in various other works.

When the theodolite cannot be placed exactly over the station*, a correction for this eccentricity, termed the "Reduction to the Centre," becomes necessary.

In the triangle $A B C$, suppose C the station where the instrument cannot be set up. If at any convenient point D, the angles ADB and ADC are taken, and the distance CD measured, the angle ACB can be thus determined.

- Where mill, churches, and other marked objects are eelected as trigonometrical points, which are otherwise peculiarly well adapted, but on which the theodolite cannot be set np , this reduction becomes necessary if angles are required to be taken from them. Temporary trigonometrical stations are easily formed of three or four pieces of scantling 10 or 12 feet long, framed together as in the aketch, with a ahort pole projecting vertically upward from the apex of the pyramid. Δ plummet suspended from this gives the exact spot on
 which to set up the theodolite. Long poles, which can be removed when it is required to adjust the theodolite over the station, answer the same purpose. Two circular diaks of iron or other metal on the top of a pole, placed at right angles to each other, form very good marke for observation.
$A E B=A C B+C A D$.
$A E B=A D B+D B C$.
$\therefore A C B+C A D=A D B+D B C$, and $A C B=(A D B+D B C)-C A D$.
But $\sin D B C=\sin B D C \times \frac{C D}{B C}$, and $\sin C A D=\sin A D C \times \frac{C D}{A C}$, and as these angles are exceedingly minute, the arcs may be substituted for the sines, and we have $\mathrm{ACB}=$ $A D B+\frac{C D}{B C} \cdot \sin B D C-\frac{C D}{A C} \sin$ ADC*.

The necessity for the above correction is not of common occurrence, as in the principal triangles stations
 are generally selected from whence observations can be made; and in those of the secondary order, the measurement of the third angle is not considered imperative.

In observing the angles for triangulation, too much care cannot be bestowed upon the adjustments of the instrument. These are briefly as follows for the 5 or 7 -inch theodolites used in fixing points in the interior, and for traversing. The large theodolite, 3 feet in diameter, known by the name of its maker, Ramsden t, is fully described in the "Trigonometrical Survey;" and the peculiarities in the construction and management of the

[^11]other large instruments with which the angles of the principal and secondary triangles are observed, are soon understood by any officer conversant with the adjustment of the smaller class, which he most generally has to work with, and which is therefore the one selected for description.

The first adjustment is for the line of collimation, and consists in making the cross wires * in the diaphragm of the telescope coincide with the axis of the supports in which the telescope rests; the proof of which is their intersection remaining constantly fixed upon some minute, well-defined, distant point, during an entire revolution of the telescope upon its own axis in the Ys, which are left open for the purpose. When this intersection on the contrary forms a circle round the object, the wires require adjusting. They are generally placed crossing each other, at an angle inclined to the horizon of about 45°, and the operation is facilitated by first turning the telescope partly round, till they appear horizontal and vertical; half the divergence of each of these lines from the point is then corrected by the screws near the eye-piece, working in the diaphragm, loosening one screw as that opposite to it is tightened. One or two trials will perhaps be required, the diaphragm being moved in the contrary direction to that which in the inverting eye-piece it appears to require.

The second adjustment is for the purpose of setting the level

[^12]attached to the telescope parallel to the optical axis, and to the surface of the cylindrical rings on which it is supported; this is done by simply levelling the telescope by means of the tangent screw to the vertical arc, and then reversing it end for end in the Ys. If the air-bubble does not remain in the centre of the tube after this reversion, it must be corrected, one half of the error by the screw attached to one end of the level, and the remainder by the vertical arc. A few trials will be necessary to obtain this adjustment perfectly; and the level should be at the same time adjusted laterally, so as to be in the same vertical plane as the line of collimation, if it should be found, on moving the telescope slightly on either side, that the bubble becomes deranged from its central position.

The object of the third adjustment is to ensure the verticality of the axis of the instrument, and consequently the horizontal position of the azimuth circle, which is instrumentally at right angles to it. The level of the telescope already adjusted furnishes the means of effecting this. The instrument being placed approximately level, and the lower plate clamped, the upper plate is moved till the axis of the telescope is nearly over two of the opposite plate screws; the bubble of the telescope level is then adjusted by the vertical arc, and the upper plate turned round 180°; if the level is not in adjustment, half the error is to be corrected by the plate screws, and half by the tangent screw of the vertical arc. The same operation must be repeated with the telescope over the other pair of plate screws; and when, after several trials, the air-bubble of the level attached to the telescope remains constantly in the centre of the tube, in whatever position it is turned, it is only necessary to adjust the two small levels on the upper plate to correspond, and they will serve to indicate when the axis of the instrument is vertical, care being taken to verify their adjustment from time to time.

The vernier of the vertical arc is the last adjustment; it should indicate zero when all the above corrections have been made. If it differs from this point, it can be set to zero by releasing the screws by which the arc is held; but if the difference is small, it is better to note it as an index error + , or - , than to make the alteration.

A better plan of obtaining the index error of the vertical arc with
accuracy is by observing reciprocal angles of depression and elevation from two stations, about four hundred or five hundred yards distant. If none exists, the angles will correspond ; otherwise the errors will be equal, but in an opposite direction; and half their difference is the index error.

If the distance selected be too long, it becomes necessary to take into account the correetions for refraction and the curvature of the earth, depending upon the arc of distance, which subjects will be explained hereafter; but for the purpose of ascertaining the index error of the vertical arc of a theodolite, the distance named is quite sufficient.

The mean of all the verniers should invariably be taken*, and each angle repeated six or eight times. The errors of eccentricity, and graduation of the instrument, are thus almost annihilated; and those of observation of course much diminished. The repetition of angles is also the only means by which they can be measured with any degree of minuteness by small instruments.

It is frequently necessary to refer to trigonometrical stations long after the angles have been observed; either for the purpose of fixing intermediate points, or of rectifying errors that may have crept into the work. Large marked stones should therefore be always buried under the principal stations which are not otherwise identified by permanent erections, and a clear description of the relative position of these marks with reference to objects in their vicinity should be always recorded. If, however, any station should be lost, and its site required to be ascertained for ulterior observations, the following method, which has been adopted by General Colby, will

[^13]be found to answer the purpose with very little trouble and with perfect accuracy.

Let D be the lost station, the position of which is required. Assume T as near as possible to the supposed site of the point in question (in the figure the distance is much exaggerated, to render the process intelligible), and take the angles ATB, ВTC; A, B, and C being corresponding stations which have been previously fixed, and the distances of which from D are known. If the angle ATB be less than the original angle ADB, the point T is evidently without the circle in the segment of which the stations A and B are situated; if the angle be greater, it is of course within the segment. The same holds good with respect to the angles BTC and BDC.

Recompute the triangle ABD , assuming the angle at D to have been so altered as to have become equal to the angle at T, and that the angle at \mathbf{A} is the one affected thereby.

Again, recompute the triangle, supposing the angle at B the one affected. In like manner in the triangle $B D C$ recompute the triangle, supposing the angles at B and C to be alternately affected
by the change in BDC. These computations will give the triangles $\mathrm{ABE}, \mathrm{ABE}$; $\mathrm{BCF}, \mathrm{BCF}^{\prime}$ calculated with the values of T , as observed at the first trial station (in both the present cases greater than those originally taken at D), and the angles at A, B, and \mathbf{C}, alternately increased and diminished in proportion. Produce AT and BT, making Tl and T1' equal respectively to ED and $E^{\prime} D$, the differences between the distances just found and the original distances to the point \mathbf{D}; and through the points 11^{\prime}, which fall nearly, though not exactly, in the circumference of the circle passing through ABD, draw the line 00°. A repetition of the same process in the triangle BCD gives the points 22^{\prime}, through which draw the line $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$, the intersection of which with 00^{\prime} gives the point $\mathrm{T}^{\mathbf{}}$, which is approximately the lost station required. Only two triangles are shown in the diagram, to prevent confusion, but three at least ought to be employed to verify the intersection at the point T^{\prime} if the original observations afford the means for doing so; and where the three lines are found not to meet, but form a small triangle, the centre of this is to be considered the second trial station, from whence the real point \mathbf{D} is to be found by repeating the process described above, unless the observations taken from it prove the identity of the spot by their agreeing exactly with the original angles taken during the triangulation.

If the observed angle T^{\prime} be less than the original angle, the distances $\mathbf{T} 1, T 1^{\prime}, \mathbf{T} 2$ and $\mathbf{T} 2^{\prime}$, must be set off towards the stations \mathbf{A}, \mathbf{B}; and \mathbf{C}, for the point \mathbf{T}^{\prime}; and these stations should be selected not far removed from D , and forming triangles approaching as near as possible to being equilateral, as the smallest errors in the angles thus become more apparent. If the observations have been made carefully and with due attention to these points, the first intersection will probably give very near the exact site of the original station, or at all events a third trial will not be necessary.

To save computation on the ground, it is advisable to calculate previously the difference in the number of feet that an alteration of one minute in the angles at A, B, C, \&c., would cause respectively in the sides AD, DB, DC, \&c. The quantities thus obtained being multiplied by the errors of the angle at T , will give the dis-
tances to be laid off from \mathbf{T} in the direction AT, BT. And in order also to avoid as much as possible any operations of measurement to obtain the position of the point T^{\prime}, the distances from the trial station T should be laid down on paper on a large scale in the directions TA, TB, \&c. (or on their prolongation), to obtain the intersection T^{\prime} of the lines 11^{\prime} and 22^{\prime}, and from this diagram the angle formed at T with this point T^{\prime}, and the line drawn in the direction of any of the stations A, B, or C , can be taken, as also the distance 'TT'; the measurement of one angle and one short line is all that is required on the ground.

The triangulation should never be laid down on paper until its accuracy has been tested by the actual measurement of one or more of the distant sides of the triangles as a base of verification, and by the calculation of others from different triangles to prove the identity of the results. Beam compasses, of a length proportioned to the distance between the stations, and the scale upon which the survey is to be plotted, are necessary for this operation; and when the skeleton triangulation is completed, the next step is the delineation of the roads, \&c., and the interior filling in of the country, either entirely or partially, by measurement, as has been already stated.

The latitude and longitude of each of the trigonometrical stations are also obtained with the most minute exactness on the Ordnance Survey, both by astronomical observations and by computation. For the latitude a zenith sector is now used, which was constructed under the directions of the Astronomer Royal, and for which a portable wooden observatory has been contrived. The instrument is placed in the plane of the meridian, and the axis, which has three levels attached, made vertical. In observing, the telescope is set nearly for a star, reading the micrometer micro scope to the sector, and then completing the observation by the wire micrometer attached to the eye end of the telescope, noting also the level readings and the time. The instrument is then turned half round, and the observation repeated, completing the bisection on this side by the tangent screw, again noting the levels and times; and lastly, the readings of the micrometer microscopes. The double zenith distance is thus obtained, from whence the
latitude is determined, as explained in the Astronomical Problems. The latitudes and longitudes have lately been adapted to the Ordnance Maps publishing on the enormous scale of 6 inches to 1 mile, to seconds of latitude and longitude, with a very trifling maximum error, a triumph of practical science that a few years since would have been deemed impossible.

CHAPTER IV.

INTERIOR FILLING-IN OF GURVEY, EITHER ENTIRELY OR PARTIALLY, BY MEABUREMENT.

The more minutely the triangulation has been carried on, the easier and the more correct will be the interior filling-up, whether entirely by measurement with the chain and theodolite, or only partially so, the remainder being completed by sketching; the former of these methods will be first explained.

Small triangles are formed by actual measurement with the chain between the nearest trigonometrical points (upon the accuracy of which they depend), the directions of the lines forming the sides of which are to be selected with reference to the ultimate objects of the delineation of the boundaries of woods, estates, parishes, \&c.* Where it is practicable, these lines should connect conspicuous permanent objects, such as churches, mills, \&c.; and in all cases the old vicious system of measuring field after field, and patching these separate little pieces together, should be most carefully avoided + . The method of keeping the field-book in measuring the interior with the chain, and plotting from its contents, is of course similar to the usual mode of surveying estates, parishes, \&c.; and, as stated in the preface, this preliminary knowledge is

[^14]supposed to have been already acquired. But on an extensive survey one general system must of necessity be vigorously enforced, to insure uniformity in all the detached portions of detail.

Previous to commencing any measurement, the ground should be carefully walked over for the purpose of laying out the work, and marks set up at the average height of a theodolite, on the highest parts of the different hills, on the necks of the ridges jutting out from them, and at the level of lakes and rivers in various parts of their course, as well as on the site of permanent objects, such as churches, \&c. These levelling marks should be all numbered and entered in a separate book, termed a field levelling book, intended to contain reciprocal angles of elevation and depression, afterwards taken between them, for the calculation of the horizontal values of the measured lines and of their comparative altitudes; which quantities are subsequently reduced to their actual heights above the level of the sea*. During the measurement of the principal lines, suitable points are selected at which to connect them by check lines, or on which to base minor triangles, and of course with a view to the determination of the natural and artificial boundaries, that, measured lines running near them, the whole of the interior content may be computed from the " Register," made out directly from the field-book, the calculation from the plot being afterwards made simply as a check upon the other. All trigonometrical points and levelling marks should, if practicable, be measured up to with the chain during the progress of the survey, and their distinctive letters or marks entered in the field-books. Allowance may be made for short distances, by holding up one end or portions of the chain till it appears horizontal, and dropping a pointed plummet on the ground, in measuring up or down a slope, or by deducting the number of links corresponding to the angle of elevation or depression, as marked on the reverse of the vertical arc of the theo-

[^15]dolite＊；but in all considerable distances this deduction would be more correctly obtained by calculation from the data in the field levelling book，kept in the following form ：－

From	$\mathbf{T o}$	Horizontal Reading．	Dpparent Elevation or Depreasion．	Bemarks．

The third column，headed＂horizontal reading，＂is the reading of the vertical arc when the telescope is levelled，and is in fact the index error，which is however best determined by reciprocal angles of elevation and depression，as before explained；and under the head of remarks are kept horizontal angles to surrounding objects and other collateral details．From the angles thus observed，and the known distances between the places of observation，is made out the following table：－

PORM OF REGISTER OF HORIZONTAL AND VERTICAL DISTANCES．

								号
4 2	B						355	Obtained by levelling．
	$\bar{B} 1254$ C	$4^{\circ} 15^{\prime} 0^{\prime \prime}$ Ele．	$\left.\begin{array}{\|l\|} \mathbf{9 , 9 9 8 8 0 4 1} \\ 8,0982975 \end{array} \right\rvert\,$	1251，5	$\begin{aligned} & 9,8195439 \\ & 8,8698680 \\ & 3,0982975 \end{aligned}$	61，38	416，33	
			3，0971016		1，7877094			
	C 984 D	$3^{\circ} 20^{\prime} 80^{\prime \prime} \mathrm{De}$	$\left\|\begin{array}{r} 9,9992609 \\ 2,9929951 \end{array}\right\|$	982，25	$\left\|\begin{array}{l} 9,8195439 \\ 8,7655943 \\ 2,9929951 \end{array}\right\|$	37，88	378，4．5	
			2，9922560		1，5781833			

[^16]This form almost explains itself: the first column refers to the plot or plan in which the points or lines are contained; the secend shows the measured length of the line written between the letters marking its extremities; the third gives the mean elevation or depression of the second object, deduced from the reciprocal angles in the levelling field-book after applying the correction for the index error in the third column of the same book, and also those for curvature and refraction when very long distances render their effect sensible; the fourth column contains the log. cosine of the angle in the preceding one, and the logarithm of the distance, the natural number answering to the sum of which is entered in the fifth column. The sixth contains the logarithm of $66=9 \cdot 8195439$ (the proportion of one link to one foot), the log. sine of the angle, and the log. of the distance; and the number answering to the sum of these three logarithms gives the relative altitude in feet, which is entered in the seventh column. The eighth column shows absolute altitudes above low-water mark, those that have been previously determined by levelling being entered in red; the others are obtained by the addition or subtraction of the altitudes in the preceding column.
The survey of the roads (though, for the sake of saving unnecessary labour, it is as much connected with them as possible) is sometimes quite independent of the measured triangles connecting churches or other permanent objects and the minor trigonometrical points, which lines mutually constitute a check upon each other. The term traversing is generally applied to this, and indeed to all irregular surveying by the chain and theodolite. On starting from any point in road surveying, the instrument being adjusted and set to zero, the telescope is directed upon one of the most conspicuous stations ; and after taking two or three angles to other fixed points, the forward angle is read off in the direction it is intended to pursue, and the upper plate firmly clamped. On arriving at the end of this line, the theodolite is set on the flag-staff or picket left at the back station, the plates remaining still clamped to the last angle; and the reading on the graduated limb when the telescope is pointed to the next forward station, is not the number of degrees contained between these two lines, but the angle that this second line forms
with the first meridian, or the line upon which the theodolite was first set. This method, now in general use among surveyors, saves the trouble of shifting the protractor at every angle, and also insures greater accuracy in plotting, as a great number of bearings being laid down from one meridian*, a trifling error in the direction of one line does not affect the next. As the work progresses, of course other lines are selected as meridians; and it should be an invariable rule, on beginning and ending a day's work, always to take the angles between the back or forward stations and any two or three fixed points that may be visible.

This rigidly mechanical method of surveying the interior evidently leaves nothing to be filled up in the field, except the features of the ground, either by sketching or by tracing horizontal contour lines at fixed vertical intervals. The comparative heights, however, obtained by levelling with the theodolite during the survey, present so many certain points of reference as to the relative command of the ground, and are of course of the greatest assistance in the subsequent delineation of the features upon the outline plan. Where the boundaries of parishes, townlands, \&c., are to be ascertained and shown on the plan, there must be persons procured whose local knowledge can be depended upon, and whose authority to point them out to the surveyors is acknowledged.

The most accurate method of calculating the contents contained between the various boundaries of parishes, estates, \&c. \dagger, has been

[^17]already stated to be from the data furnished by the field-book, in which case every measured figure must be either a triangle or a trapezoid. The diagram and the content plot must be first drawn in outline, and used as references during the calculation to prevent errors and to assist in filling up the content register; and from this the acreage of the different portions is taken. The following example of the field-book, with the diagram content plot, and content register, all deduced from it, will better explain the details of this system.

In this specimen of a field-book, all offsets, except those having relation to the boundary lines (supposed to be of townlands, or any division of property, the contents of which are to be calculated from the field-book), are purposely omitted, to prevent confusion, the example being given solely to illustrate the method of calculating these larger divisions. The rough diagrams are drawn in the field-book not to any scale, but merely bearing some sort of resemblance to the lines measured on the ground, for the purpose of showing, at any period of the work, their directions and how they are to be connected; and also of eventually assisting in laying down the diagram and content plot. On these rough diagrams are written the distinctive letters by which each line is marked in the field-book, and also its length, and the distances between points marked upon it, from which other measurements branch off to connect the interior. The boundary lines are further distinguished from those run merely for the purpose of taking offsets to the minute subdivision of property, \&c. (and which, as before observed, are omitted in the present instance, both in the field-book and the

[^18]plot), by dotted lines; so that, in plotting the diagram to a scale, their difference is at once perceptible.

The form of keeping the field-book is similar to that practised on the Ordnance Survey, reference to the letters distinguishing former measurements being always made; and the letter of the beginning and ending of every line by which it is designated in the diagram, being also written at the top and bottom of its representative in the field-book.

The construction lines all forming triangles, and offsets having reference to the boundaries, are retained in the content plot, for the purpose of assisting, and preventing mistakes in the calculation.

In the content plot and diagrams the trigonometrical points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are on an average rather more than half a mile apart, so that in reality the same number of divisions of townlands would not occur in the space comprised within them; and, instead of letters, they would be distinguished by the name of the townland or parish.

The large letter B2 on the diagram of the triangle ABC refers to the distinctive mark of the field-book; and the small figures $3,4,5, \& c$., written along the construction lines, to the different pages of the same book, to which reference can thus be made at any moment.

The contents only of the large divisions are calculated from the field-book. Those of the minute inclosures are (if required) obtained from the plot, from which the contents of townlands and parishes are also computed, for the purpose of checking the previous calculations.

The method of calculating these contents by means of the measured triangles and offsets will be easily comprehended by comparing together the field-book, content plot, and content register, for the triangle CAD. That for ABC, being on exactly a similar principle, has been omitted, as it could add nothing to the explanation of the system.

Plate 1.

$\therefore \therefore$,

Digitized by Google

CONTENT REGISTER-TRIANGLE CA D.-Plate 4.

Plan and Plots.	Division or Subdivision.	Triangle or Trapezium.	1st Side.	2nd Side.	3rd Side.	Content in Chains.	Content in Statute Acres.
	J Additives. Negatives.	8 C	Page 37		None.	3.5270	
	$\begin{gathered} \text { D } \\ \text { Additives. } \end{gathered}$	$\left.\begin{array}{llll} H & T & N \\ & T & H \\ N & U & \mathbf{V} \\ \mathbf{N} & \mathbf{R} & \mathbf{M} \end{array}\right\}$	Page 37 584 844	- .	- -	83-0904	
				$\begin{aligned} & 742 \\ & 972 \end{aligned}$	$\begin{aligned} & 590 \\ & 600 \end{aligned}$	$\begin{aligned} & 16 \cdot 8759 \\ & 25 \cdot 1184 \end{aligned}$	
		TU \{	$\begin{aligned} & 56 \\ & 54 \end{aligned}$	$\begin{aligned} & 54 \\ & 98 \end{aligned}$	$\begin{array}{r} 34 \\ 170 \end{array}$	$\left.\begin{array}{r} -1870 \\ -1 \cdot 2920 \end{array}\right\}$	
				$\underline{20}$	9644	$1 \cdot 4790$	
		$\mathbf{\nabla} \mathbf{\nabla} \quad\{$	$\overline{20}$			$\left.\begin{array}{l}\cdot 0960 \\ .0440\end{array}\right\}$	
				104		$\left.\begin{array}{c} \cdot 1400 \\ 1 \cdot 7264 \\ \cdot 6344 \end{array}\right\}$	
		N V \quad,	$\overline{104}$		332 122		
						$2 \cdot 3608$	
		N R $\left\{\begin{array}{l}\{ \\ \text { R M }\end{array}\right\}$	$\begin{array}{r} 736 \\ 90 \\ 46 \\ 30 \end{array}$	136		$\left.\begin{array}{c}2 \cdot 1760 \\ 2 \cdot 3052 \\ 1 \cdot 4824 \\ \cdot 2584 \\ \cdot 1122\end{array}\right\}$	
				90	204		
				46	218 68		
				30 36	34		
						6.3342	
			-	30	256	$\left.\begin{array}{r} \cdot 3840 \\ -4592 \\ \cdot 2340 \end{array}\right\}$	
			30	26	164		
			26	-	180		
						1.0772	
				Total	Additives	86.4759	
	D Negativen.	$\mathbf{T H}$	Page 37	- •	- ${ }^{-}$	$1 \cdot 1480$	8•16307
			- 90	$\begin{aligned} & 90 \\ & 48 \end{aligned}$	$\begin{array}{r} 72 \\ 228 \\ 150 \end{array}$	$\left.\begin{array}{r}\text { - } 3240 \\ 1.5732 \\ \cdot 3600\end{array}\right\}$	
		O V	$\begin{aligned} & 90 \\ & 48 \end{aligned}$	-			
		N V $\quad\{$	$\overline{100}$	100		$2 \cdot 2572$	
					162 126	.$_{\cdot 6100} 6300$	
				Total Total	Negatives Additive: Difference	$1 \cdot 4400$	
						$\begin{array}{r} 4.8452 \\ 86 \cdot 4759 \end{array}$	
						81.6307	
	$\underset{\text { Additives. }}{\mathbf{F}}$	$\begin{array}{lll} \mathbf{A} & \mathbf{N} & 0 \\ \mathbf{R} & \mathbf{O} & \{ \end{array}$	$\begin{array}{r} 2130 \\ 36 \\ 62 \\ 110 \end{array}$	1340	1948	127.8318	
				62	$\begin{aligned} & 176 \\ & 230 \\ & 160 \end{aligned}$	$\left.\begin{array}{r}.8624 \\ 1.9780 \\ .8800\end{array}\right\}$	
				110			
						3.7204	
				Total	Additives	181-5522	

INDEX.

Triangle	A C	Page 37	-	-••	679.5032	
		, 37		\ldots	109.5064	
		" 37	-	$\cdot \cdot \cdot\{$	$2 \cdot 8690$	
		, 38	-•	. . . $\{$	3.5270	
		39		-	81.6305 103.9778	
		" 39	- •	-••\{	100.1882	
		See	above.	. . . $\{$	137-1271	
		See	above.	-••\{	140.4893	
				Divisions or Townlands	679.3155	67.9315
				Triangle	679.5032	67.9503
				ACD .		
				Difference	$\cdot 1877$	

It may perhaps be thought that too much stress has been laid upon forms, in the above description of the details of an extensive survey; but method is a most essential part of an undertaking of such magnitude; and without excellent preliminary arrangements to insure uniformity in all the most trifling details, the work never could go on creditably. In topographical surveys on a smaller scale, where the boundaries of parishes, \&c., are not to be shown, or the contents of various portions to be calculated, the same rigid attention to minutiæ is not requisite; but before closing this branch of the subject, it is only necessary, as a proof of the mass of valuable statistical and geological information that can be collected during the progress of a national trigonometrical survey, and which is quite out of the reach of any individual, to turn to the first volume of "The Ordnance Survey of the County of Londonderry." If this valuable accompaniment to the field operations could have been continued throughout every county, Ireland would be possessed of more available local knowledge than is on record in any part of the world.
The following brief hints may be found useful in filling-in the detail of a survey with the chain and theodolite.
The field-book should be kept in ink in the field, and have a distinctive letter marked on it as a reference; every day's work should be dated, and the names of those employed entered. On an extensive survey it is also necessary that every book should be kept on precisely the same system, that one person might find no difficulty in plotting from the book of another.

The theodolites should be constantly examined and adjusted, and the chains compared every day with a standard chain, or marks laid down from one for that purpose, and their errors, if any, either corrected or entered in the field-book, to be allowed for in plotting. The offsets should be numerous, and minute in proportion to the scale upon which the survey is to be plotted*, and the names of all

[^19]towns, villages, \&c., carefully noted, and care taken to insure their correct orthography, and to quote the authority upon which it rests when different from that sanctioned by custom.

In measuring long lines between conspicuous objects, marks should be left, to be connected by check lines, or on which to base smaller triangles; where impeded by a house or any obstacle, the means of avoiding it and returning again to the measured line are to be found further on.

Irregular inclosures and roads, even where triangles cannot be measured, can still be surveyed by the chain alone, but of course not so accurately as with the aid of the theodolite.

This method of "traversing" is managed as follows:-Suppose

A B the first line, and $B C$ the direction in which the next is required to be measured, prolong $A B$ to E, make $B F$ equal to $B E$, and measure the cord EF, from which data the direction of BC can be laid down.

The dimensions in the field-book may be kept either between two parallel lines running up the page, with the offsets written on the right and left of these lines as in the example facing page 36 , or on a species of diagram bearing some sort of resemblance to the outline of the ground to be surveyed, which latter method is supposed to assist in the plotting; but if references to the starting points of the different lines, and their junctions with each other, are entered in the field-book kept according to the first system, and the angles forward written on the right or left of the ruled lines according to the direction of the next forward station, there can never be any difficulty in plotting the work, even after a con-

[^20]siderable lapse of time, which however should not be delayed longer than is absolutely necessary. It is customary for land surveyors to compute their work from the plot, adding up the contents

- of each inclosure for the general total, which is perhaps checked by the calculation of two or three large triangles ruled in pencil so as to correspond nearly to the extreme boundaries, whose lengths are taken from the scale; but if the rigid mode of computing everything from the field-book is deemed too troublesome, still the areas of the large triangles, measured on the ground, should be calculated from their dimensions taken from the field-book, and the contents of the irregular boundaries added to or subtracted from this amount, which constitutes a far more accurate check upon the sum of the contents of the various inclosures than the method in general use. The calculation of irregular portions outside these triangles is much facilitated by the well-known method of reducing irregular polygons to triangles having equivalent areas.

When the contents of fields are to be calculated from the plot, the scale should not be less than twenty, and may be as much as three or four chains to one inch. The former of these two last scales is that on which all plans for railroads submitted to the House of Commons are required to be drawn, and the latter is used for plans of estates, \&c.

To return to the second division of this subject, viz. the filling up of the interior, partly by measurement and partly by sketching, which is generally the mode adopted in the construction of topographical maps.

The roads, with occasional check lines, are measured as already described, the field-book being kept in the same method as when the entire county is to be laid down by measurement, excepting that all conspicuous objects some distance to the right and left of the lines are to be fixed by intersections with the theodolite, either from the extremities of these lines or from such intermediate points as appear best adapted for determining their positions. These points when plotted, together with the offsets* from the field-book,

[^21]present so many known fixed stations between the measured lines, and of course facilitate the operation of sketching the boundaries of fields, \&c., and also render the work more correct, as the errors inseparable from sketching will be confined within very narrow limits.

In all cases where the compass is used to assist in filling-in the interior (and it should never be trusted in any more important part of the work), it becomes of course necessary to ascertain its variation by one of the methods which will be hereafter explained. Independent of the annual change in its deviation, the horizontal needle is subject to a small daily variation, which is greatest in summer, and least in winter, varying from 15^{\prime} to 7^{\prime}. Its maximum on any day is attained to the eastward about 7 A.m., from which time it continues moving west till between 2 and 3 p.m., when it returns again towards the east * but this oscillation is too small to be appreciable, as the prismatic compass used in the field cannot be read to within one-half, or at the nearest one-quarter, of a degree of the truth. Portions of the work, as plotted from the fieldbook, are then transferred to card-board or drawing-paper, or traced off on thin bank post paper, which latter has the advantage of being capable of folding over a piece of Bristol board fitting into the portfolio, and from its large size, containing on the same sheet distant trigonometrical points which may constantly be of use. It can be folded over the pasteboard, so as to expose any portion that may be required, and when the work is drawing near to the edge, it is only necessary to alter its position. In moist weather, prepared paper, commonly termed asses' skin, is the only thing that can be used, as the rain runs off it immediately, without producing any effect on the sketch.

The portable instruments generally used in sketching between

[^22]measured lines and fixed points in the interior, as well as in military sketches made in the exigency of the moment without any measurement whatever, are a small 4 -inch, or box sextant (or some small reflecting instrument* as a substitute for it), and the azimuth prismatic compass. Any reflecting instrument is certainly capable of observing angles between objects nearly in the same horizontal plane, with more accuracy than the compass; and from its observations being instantaneous, and not affected by the movement of the hand, it is better adapted for use on horseback, but it is not so generally useful in filling up between roads, or in sketching the course of a ravine or stream, or any continuous line.

Whichever of these instruments is preferred, of course a scale of chains, yards, or paces, and a protractor, are required, for laying off linear and angular distances in the field.

A very convenient method of using the latter for protracting bearings observed with the azimuth compass, is to have lines engraved transversely across the face of the protractor, at about a quarter of an inch apart. The paper upon which the sketch is to be made must also be ruled faintly across in pencil at short unequal distances, at right angles to the meridian, with which lines one or more of those on the protractor can be made to correspond, by merely turning it round on its zero as a pivot, this point being kept in coincidence with the station from whence the bearing is to be drawn. The bevelled edge of the protractor is thus evidently parallel to the meridian, and the observed bearing being marked

[^23]and ruled from this point, is the angle made by the object with the meridian.

For instance, the bearing of a distant object upon which it is required to place, was observed from D to be 30°. The protractor in the sketch is shown in the proper position for laying off this angle, and the dotted line DE is the direction required.

In fixing the position of any point with the compass, by bearings taken from that point to two or three surrounding stations whose places are marked on the paper, the zero of the protractor is made to coincide with one of these stations, and its position being adjusted by means of the lines ruled across its face and on the paper, the observed angle is protracted from this station, and produced through it. The same operation being repeated at the other points, the intersection of these lines gives the required place of observation.

Instead of the above system of ruling east and west lines across the paper, lines may be drawn parallel to the meridian for adjusting the place of the protractor. Thus, suppose from the point D any observed bearing, say 40°, is to be laid down. By placing the zero \mathbf{C} of the protractor on any convenient meridian, and turning it upon this point as a pivot until the required angle of 40° at E coincides also with the same meridian NS , it is only

necessary to move the protractor, held in this position, slightly up and down upon this line, until its bevelled edge touches the point $\mathbf{D} ; \mathbf{D F}$ is then at once drawn in the required direction. The distances may also be set off from a scale graduated on the edge of the protractor, by merely moving it along this line, DF, until some defined division corresponds with the station D .

By observing with a sextant the angles between three or more known stations, the place of the observer can be ascertained, both instrumentally and by calculation, but not so readily as with the compass. The method of thus determining the position of any point will be explained hereafter.

The plane table is perhaps the best contrivance for sketching in the interior detail of a survey with accuracy, but its size renders it too inconvenient to be termed portable, and its use is now almost universally superseded by the portfolio and compass. The little reflecting semicircle invented by Sir Howard Douglas, is so far an improvement on the sextant that it protracts the angles it observes by means of a contrivance by which the reflected angle is doubled instrumentally, and the angle is protracted upon the paper by means of a bevelled projection of the radius. Other varieties of small reflecting instruments have also been contrived for the same purpose.

The process of sketching between the fixed points plotted on the paper is similar to surveying with the chain and theodolite as far as the natural and artificial boundaries are concerned; the distances being obtained by pacing; the offsets (if small) by estimation; and the bearings of the lines by the compass or sextant*. Everything is, however, here drawn at once upon the paper, instead of being entered in a field-book. The features of the ground are sketched at the same time as the boundaries and other details; and this part of the operation, being less mechanical

[^24]than the preceding, requires far more practice before anything like facility of execution can be acquired; it is, however, more particularly connected with the subject of the next chapter, where the different methods of delineating ground in the field will be explained.

The following are the best practical methods of passing obstacles met with in surveying, and of determining distances which do not admit of measurement, by means adapted for use in the field, most of them requiring no trigonometrical calculation. Some of these problems are solved without the assistance of any instrument for observing angles; but as a general rule (subject of course to some few exceptions), it is always better to make use of the theodolite, sextant, or other portable instrument, than to endeavour by any circuitous process to manage without angular measurement.

The measurement of the line AD, supposed to be run for the determination of a boundary, is stopped at B by a river or other obstacle.

The point F is taken up in the line at about
 the estimated breadth of the obstacle from B; and a mark set up at E at right angles to $A D$ from the point B, and about the same distance as BF. The theodolite being adjusted at E, the angle $B E C$ is made equal to $B E F$, and a mark put up at C in the line $\mathbf{A D} ; \mathbf{B C}$ is then evidently equal to the measured distance $\mathbf{F B}$.

If the required termination of the line should be at any point C^{\prime}, its distance from B can be determined by merely reversing the order of the operation, and making the angle BEF equal to BEC , the distance $\mathbf{B F}^{\prime}$ being subsequently measured. There is no occasion in either case to read the angles. The instrument being levelled and clamped at zero, or any other marked division of the limb, is set on B; the upper plate is then unclamped, and the telescope pointed at F, when being again clamped, it is a second time made to bisect B; releasing the plate, the telescope is moved towards D till the vernier indicates zero, or whatever number of degrees it
was first adjusted to; and the mark at \mathbf{C} has then only to be placed in the line AD, and bisected by the intersection of the cross wires of the telescope.

If it is impossible to measure a right angle at B, from some local obstruction, lay off any convenient angle ABE , and set up the theodolite at \mathbf{E}.

Make the angle BEC equal to one-half of ABE, and a mark being set up at C in the prolongation of $A B, B C$ is evidently equal to BE, which must be measured, and which may at the same time be made subservient to the purpose of delineating the boundary of the river.

The usual way of avoiding an obstacle of only a chain or two in length, such
 as a house or barn, is by turning off to the right or left at right angles till it is passed, and then returning in the same manner to the original line. But perhaps a more convenient method is to measure on a line making an angle of 60° with the original
direction a distance sufficient to
clear the obstacle, and to return
to the line at the same angle, making $C D=B C^{\prime}$; the distance $B D$ is then equal to either of these measured lines.
The distance from \mathbf{B} on the line A 0 , to the trigonometrical point 0 , which is inaccessible, is determined in the manner explained in the first method in the last page; the point C is taken at right angles to BA from the point B , and the angles

$o C B$ and $B C D$ being made equal, $B D$ is equivalent to the distance B o required. The same object is attained by laying down the plan of the building on a large scale, and taking the distance Bo from the plot.

To find the point of intersection of two lines meeting in a lake or river, and the distance $D B$ to the point of meeting:-From any point F on the line $A X$ draw $F D$, and from any other point E draw ED, produce both these lines to H and G, making the prolongations either equal to the lines themselves, or any aliquot part of their length, suppose one-half; join HG , and produce it to O, where it meets the line $C B$, then $O H$ is one half of $E B$, and OD equal to half of DB ; which results give the point of intersection B, and the distance to it from D.

To find the distance to any inaccessible point, on the other side of a river for instance, without the use of any instrument to measure angles.-(This and the two following are taken from the " Aide Memoire.") A is any inaccessible point the distance of which from B is required : produce $A B$ to any point D ; draw $\mathrm{D} \boldsymbol{d}$ in any direction bisected in C ; join BC and produce it to $b, \mathbf{C} b$ being equal to BC ; join $d b$ and produce it to a, the intersection of the prolongation of $\mathbf{A C}$, then
$a b=A B \quad$ The proof is and $a d=\mathrm{AD}\}$ evident.

Another method-
Prolong AB to any point D, making $B C$ equal to CD; lay off the same distances in any direction $\mathrm{D} c$ $=c b$; mark the intersection E of the line joining $\mathrm{B} c$ and $c b$; mark also F the intersection of DE produced, and of $A b$; produce D b, and B F, till they meet in a, and

$$
\left.\begin{array}{r}
a b=\mathrm{AB} \\
a c=\mathrm{AC} \\
a \mathrm{D}=\mathrm{AD}
\end{array}\right\}
$$

To measure the distance between A and B, both being in-accessible:-From any point \mathbf{C} draw any line $\mathbf{C} c$ bisected in \mathbf{D}; take any point E in the prolongation of $A C$, and join ED, producing the line to $\mathrm{De}=\mathrm{ED}$; in like manner take any point F in the prolongation of BC , and make $\mathrm{D} f=\mathrm{FD}$.

Produce AD and ec till they meet in a, and also BD and $f c$ till they meet in b; then $a b=A B$.

If $A B$ cannot be measured, but the points A and B are accessible, their distances from any point 0 are determined; and by producing these lines any aliquot part of their length, as $O P, O Q$, the distance $P Q$ will bear the same proportion to AB.

в 2

A right angle* can often be laid off when no means of measuring other divisions of the circle are at hand. The distance AB can then be thus obtained:-
BC and DE are both perpendicular to AD , and the points E and C are marked in a line with A; then

$$
A B=\frac{B D . B C}{(D B-B C)^{\circ}}
$$

The small triangle $\mathbf{C d} \mathbf{E}$ being similar to ABC.

Of course with a sextant, or other means of observing the angle ACB, A B becomes simply the tangent of that angle to the radius BC: a table of natural sines and tangents engraved on the lid of any portable reflecting instrument is often of great service, particularly in sketching ground without any previous triangulation, and in obtaining the distance to an enemy's batteries, \&c., on a military reconnaissance. The height of a point on an inaccessible hill may also be obtained without the use of instruments, thus:-

* A perpendicular can always be thus laid off with the chain :-suppose a the point at which it is required to erect a right-angle : fix an arrow into the ground at a, through the ring of the chain, marking twenty links; measure forty links on the line $a b$, and pin down the end of the chain firmly at that spot, then draw out the remaining eighty links as far as the chain wil
 stretch, holding by the centre fifty-link brass ring as at c; the sides of the triangle are then in the proportion of three, four, and five, and consequently cab must be a right angle.

An angle equal to any other angle can also be marked on the ground, with the chain only, by measuring cqual distances on the sides containing it, and then taking the length of the chord : the same distances, or aliquot parts thereof, will of course measure the same angle.

Drive a picket 3 or 4 feet long at H, and another at L, where the top of a long rod $F D$ is in a line with the object S from the point A (the heads of these pickets being on the same level); mark also the point C, where the head of the rod is in the same line with S, from the top of any other picket B, and measure $A F$ and $B C$; lay off the distance BC from F to b, and the two triangles ADb and $A S B$ are evidently similar, whence $\frac{P S}{D F}=\frac{A B}{A B}=\frac{H I}{H O}$ and $\frac{A P}{\Delta P}=\frac{A B}{\Delta b}=\frac{H I}{H O} . \quad P S$ therefore $=D F \cdot \frac{H I}{H O}$; and $A P=A F \cdot \frac{H I}{H O}$.

A few other methods of ascertaining distances and heights, more particularly connected with military reconnaissances, will be found in the next chapter.

Where angles can be taken between three inaccessible objects, the relative positions of which are known, and can be laid down on paper; the place of the observer can be ascertained either by calculation, by construction, or by means of an instrument used for that purpose, called a "station pointer;" or, what is better still, a piece of thin tracing paper, with the observed angles plotted upon it, can be shifted about until the point falls into the only spot from whence the lines containing these angles pass through the three fixed stations. The case is a very common one in maritime surveying, where the two first methods of solution, calculation and construction, are seldom thought of; and the last, which is the most simple, and sufficiently correct for the purpose, generally adopted. In a trigonometrical survey, of course, this method would never be thought of for fixing a station, but the calculations for the different cases that may occur of the three points being in one line, or forming a triangle within or without which the observer may happen to be, will be found, with a mass of other information on such subjects, in "Adam's Geometrical Essays," pp. 169 to 177.

The following is the mode of obtaining the position of the observer by construction, in the case that most commonly occurs, viz. when the three points form a triangle, without which the place of observation lies :- O, P, and Q represent the three points on shore whose positions have been determined by interior triangulation, and S a rock or anchorage, whose place is to be determined with relation to the stations above mentioned. Suppose
the angle QSP is observed 35°, and $\operatorname{PSO}=40^{\circ}$, describe a circle

passing through Q, S, and P, which is thus done:-Double the angle QSP which $=70^{\circ}$; subtract this from 180 , leaving 110°; lay off half of this, or 55° at PQR and QPR, and the angle at R is evidently $=70^{\circ}$, or double QSP; now the angle at the centre being double that at the circumference, a circle described from R as a centre with the radius RQ , or RP , will pass through the point S. In like manner a circle described from V, with the radius V P, will also pass through S, and their intersection gives the spot required.

For the analysis of the calculation of this problem, vide " Puissant, Géodesie," vol. i. p. 233.

The method of surveying any tract of country through which a line of railway is projected or has been determined upon is so similar to that of measuring roads or other continuous lines by " traversing" with the chain and theodolite, that it does not require any peculiar directions. The lines, however, being generally very long, must be measured with the greatest exactness, and the angles be observed with proportionate care. Where practicable also, the work should, whilst in progress, be tested by reference to known fixed points near which it passes, which can in most cases be obtained from good maps. The existing Standing Orders of Parliament regulate the scale upon which these surveys are required to be plotted in England; and the lateral deviation
allowed from the proposed line of rails, with other local causes, determine the breadth required to be embraced in the survey.

For the methods of laying out the lines of railways; the levels of the different portions; determining the curves, gradients, and slopes of embankments and cuttings, \&c., every information can be obtained from the works of Mr. Hascoll and many others; and it would be out of place here to attempt any description of subjects which belong to a most important branch of civil engineering, and embrace such a multitude of details. A few remarks, however, upon the method of taking sections for railways, and the scales upon which they should be plotted, will be found in the chapter upon Levelling.

CHAPTER V.

military reconnaibsance, and hints on aretching ground. grrman sybtrmb of delineating ground.-horizontal contours.-abological maps.-Conventional bigne.

Ter sketch of any portion of ground for military purposes should, in all cases, be accompanied by an explanatory statistical report, and the combination of these two methods of communicating local information constitutes what is termed a Military Reconnaissance, in which the importance of the sketch, or the report, predominates according to circumstances.
The object for which a reconnaissance is undertaken naturally suggests the points to which the attention of the officer should be principally directed; if for example, it is merely to determine the best line of march for troops through a friendly or undisputed country; the state of the communications, the facilities of transport, and possibility of provisioning a stated number of men upon the route, are the first objects for his consideration. If the ground in question is to be occupied either permanently, or for temporary purposes, or if it is likely to become the seat of war; his attention must be directed to its military features, and a sketch of the ground, with explanatory references, together with a full and correct report of all the intelligence he can collect from observation, or from such of the inhabitants as are most likely to be well acquainted with the localities*, and most worthy of credence, will demand the exertion of all his energies: upon the correct information furnished by this reconnaissance may depend, in a great measure, the fate of the army.

[^25]The principal points for observation in a military sketch and report are-

Roads.-Their direction; nature; liability to injury; facility of repair; practicability, in what seasons, and for what species of troops; exposure to, and means of security from, enfilade; whether bordered or not by hedges, ditches, or banks, \&c.

Canals.-Means of destruction, or of rendering them of use; construction; depth of water, size of locks, \&c.

Rivers.-Their sources, width, depth, velocity of current; fords* for infantry and cavalry, whether permanent, or only passable at certain periods of tide, or seasons of the year, and if exposed to fire; means of passage; profile of banks; size and nature of vessels and boats employed in the navigation; tributary springs and rivulets; bridges, with their dimensions, materials, and construction, and means of destroying or repairing them.

Military Fratures.-Inclination of slopes, and all irregularities of ground; accessible or not for cavalry or infantry; description of country, open or inclosed; relative command of hills \dagger; ravines; forests; marshes; inundations; barriers; plains; facilities for landing, if on a sea coast ; military posts, and fortified towns, \&c.

Statibtical Information.-The population and employment of the different towns, villages, and hamlets, contained within the limits of the sketch. Agricultural and other produce; commerce; means of transport; subsistence for men and horses, \&c.; with a variety of minute but important details, for which the reader is referred to the excellent essay on this subject, in the fourth volume of the "Mémorial Topographique et Militaire;" to the " Aide Mémoire des Officiers du Genie;" Macauley's "Field Fortification;" \&c.
The degree of accuracy of which a sketch of this nature is susceptible depends upon the time that can be allowed, and the means that may be at hand. If a good map of the country can

[^26]be procured (which is generally the case), the positions of several conspicuous points, such as churches, mills, \&c., can be taken from it and laid down on the required scale, and, if the ground to be sketched is extensive, transferred to several sheets of paper to be filled in simultaneously by any requisite number of officers; or a base may be roughly measured, paced, or otherwise obtained from some known distance, such as that between milestones for instance, and angles taken with a sextant or other instrument from its extremities to different well-defined objects, forming the commencement of a tolerably accurate species of triangulation, which may be laid down without calculation, within which the detail can be sketched more rapidly and with far more certainty than without such assistance. No directions that can possibly be given will render an officer expert at this most necessary branch of his profession, as practice alone can give him an eye capable of generalizing the minute features of the ground, and catching their true military character, or the power of delineating them with ease, rapidity, and correctness.

The instruments used in sketching ground have already been alluded to when describing the mode of filling in the detail between measured lines on a regular survey. In addition to the advantages there ascribed to the azimuth compass, it will be found peculiarly well adapted for sketching on a continuous line, such as the course of a road or river, or a line of coast, which reflecting instruments are not; and the angles with the magnetic meridian, measured by the compass, can be read off with quite as much accuracy as they can be laid down by the small protractor used in the field. This should have a scale of 6,4 , or 3 inches to one mile (or whatever other proportion may be preferred) engraved on the other bevelled side, and with a sketching portfolio* and compass, together with a small sextant and field telescope, comprise all the instruments that can be required by an officer

[^27]-

Gertical sistem

Sirall: : Incire: tu 1 Mile

10NDON.HOHN WEAt.F: HASG
employed on a reconnaissance; and as they can alvays be carried without inconvenience about his person, or strapped in front of his saddle, he need never be driven to the necessity of sketching entirely without their assistance, though the practice of doing so occasionally is decidedly of service, as it teaches him to make use of his eyes, and tends to make him a good judge both of linear and angular measurement*.

Sketching such parts of the interior detail as have a decidedly marked outline is comparatively easy, but the delineation of ground, so as to represent the various slopes of the hills and irregularities of the surface, is far more difficult; and methods have been adopted both on the Continent and in this country, as systems for expressing these features, giving not merely a general idea of their character, but a mathematical representation of their various complicated inclinations; so that the angle of every slope might be evident from a mere inspection of the drawing, or measured from a scale; and, consequently, furnishing data for constructing sections of the ground in any required direction. This degree of perfection would of course be most desirable in military sketches, as well as in finished topographical plans, but the labour and difficulty attending the execution will always prevent its general application, excepting in surveys of a national character, or of limited detached portions of ground.

The two methods in general use for representing with a pen or pencil the slopes of the ground are known as the vertical and the horizontal. In the first of these the strokes of the pencil follow the course that water would take in running down these slopes; in the second (which is comparatively of late introduction) they represent horizontal lines traced round them, such as would be shown on the ground by water flooding the country at the different stages of its progressive altitude. This last is the mode now generally practised, and it certainly produces a more correct re-

[^28]presentatlon of the general character and features of the ground than the vertical method*. Neither of them, however, when sketched by the eye, between fixed points and measured lines, aspires to the mathematical accuracy which is obtained by tracing with a theodolite or spirit level, horizontal contour lines at equidistant vertical distances over the surface of the ground, the method of doing which will be treated of in the chapter upon Levelling. Systems have also been introduced into Germany, founded upon a proposal by Major Lehman, for representing the slopes of the ground by a scale of shade consisting of a combination of vertical and horizontal lines, but they have not been adopted in this country. The light in Major Lehman's system, as is generally the case in describing ground with a pen, is supposed to descend in vertical rays, and the illumination received by each slope is diminished in proportion to its divergence from the plane of the horizon. As vertical rays falling upon a plane inclined at an angle of 45° are reflected horizontally, this slope, which is considered the greatest that is ever required to be shown, is also considered the maximum in the scale of shade, and is represented by perfect black. A horizontal plane reflects all rays upwards, and is, therefore, represented at the other end of the scale by perfect white; and the intermediate degrees being divided into nine parts, show the proportion of black in the lines to the white spaces intervening between them for every 5°; which at 5° is 1 to 8 ; at $10^{\circ}, 2$ to 7 ; at $15^{\circ}, 3$ to 6 , \&c. Figure 1 will explain the construction of this scale, and the thickness of the strokes drawn on this principle must be copied till the hand becomes habituated to their formation. In sketching ground the inclinations must be measured or estimated, if the eye is experienced enough to be trusted, and are to be represented by lines of a proportional thickness. To this system is to be objected its extreme difficulty of execution, as well as that of estimating correctly by the eye the angle intended to be represented by the thickness of the lines; though Mr. Siborn, who published a work in 1822 on "Topogra-

[^29]
phical Plan Drawing," founded on this system of Major Lehman's, considers that between 10° and 35° of altitude the slope may be read by mere inspection within 1°; more accurately, indeed, than it can possibly be measured on the ground with a clinometer, or any portable contrivance of the sort. In Mr. Siborn's work contour lines are recommended to be drawn merely as a guide for the vertical strokes; but the system of tracing these horizontal lines at fixed vertical intervals, and drawing between the contours vertical strokes, without any reference to their thickness, but merely their direction, presents a far more easy mode of expressing correctly the actual surface of the ground, and infinitely more intelligible to those who have to make use of the plan. Indeed, if the contour lines are traced, at short vertical distances, either fixed or varying according to the nature of the ground, there is no occasion for the vertical strokes whatever, as these always cut the horizontal lines at right angles; this was the method recommended, wherever the ground was required to be shown very accurately, by the committee of French officers of engineers, appointed, in conjunction with some of the most scientific men of that period, to establish one general system of topographical plan drawing. The combined method of vertical lines and horizontal contours, at one fixed difference of level, is described in the German work alluded to, and also in Sir J. C. Smyth's "Topographical Memoir." From the vertical distance being a constant quantity, the angle formed by the slope of the ground is obtained by taking the length of the vertical line between any two of the contours in a pair of compasses, and applying it to a scale constructed upon a simple principle, self-evident from the figure. Above 45 the base, or " normal," becomes too short to be ap-

preciable if it has been constructed to suit moderate inclinations of the ground; and if on account of steep declivities the normal is increased in length, it becomes quite unmanageable on gentlyinclined surfaces.

By way of obviating this difficulty, and also making the same scale of normals still universally applicable, the vertical distance,
where required from the bold nature of particular slopes, is doubled or tripled, and these normals distinguished from others of the same length by being represented with thicker double or triple lines. This contrivance, the invention of Colonel Van Gorkum, is most highly extolled by Sir J. C. Smyth, in his "Topographical Memoir," in which he strongly recommends the adoption, in the British service, of some part of the detail of this method of sketching ground, and proposes to omit the horizontal contours, but to take the angles of depression of the hills in sketching, and to represent their slopes, not over the whole plan, but occasionally on ground of the most importance, by normals of the proper length corresponding to such a vertical distance as may be judged best suited to the scale employed. On a scale of 4 inches to 1 mile, Colonel Van Gorkum fixes his perpendicular at 24 feet: Sir J. C. Smyth, in the memoir alluded to, has tabulated what he considers best adapted to the four scales in most general use; making it, at 6 inches to 1 mile, 22 feet; at 4 inches, 32 feet; at 2 inches, 66 feet; and at 1 inch, 132 feet. At 13°, in all these cases, he doubles the perpendicular, and at 50° triples it. With all deference to such authority, it is conceived that horizontal contour lines, traced at short known and generally equal vertical distances over the ground, afford ample data for the construction of sections in any required directions, even more accurate than a model of the features of the ground. The delineation of ground on the Ordnance Survey is now entirely effected on this system. The contours are traced with a spirit level or theodolite at different vertical intervals suited to the character of the surface, but averaging about 100 feet; these are interpolated with intermediate contour lines, traced with a water level, as being more expeditious, at the constant vertical distance of 25 feet. For the method of tracing these instrumental contour lines, see the chapter on Levelling, to which this subject more particularly belongs.

For representing the features of the country in a topographical plan, on a moderate scale, where the surface of the ground is not required to be determined with mathematical precision, the horizontal system of etching the hills, alluded to in page 34, is sufficiently accurate, and has the advantage of being generally intelli-
gible. In addition to the sketch of the ground, a representation of the geological features of the country can be given, without at all interfering with or confusing the sketch, by tracing on the back of the paper the divisions of the geological features, the different portions of which are afterwards coloured according to the conventional system of distinguishing the several various formations on geological maps. On holding the sketch against the light these divisions appear clearly visible, though in any other position of the paper they are not in the least perceptible. Geological sections should also be shown on the margin of the sketch, having reference to lines drawn across it*.

The inclination of such slopes as are of peculiar moment are measured with a "Clinometer," and the angles written either on the slopes themselves or as references. This little instrument can be made by cutting a small quadrant out of pasteboard and roughly graduating the arc. A small shot, suspended by a piece of silk, forms the plummet; and independently of its use in measuring vertical angles, it is of great assistance in tracing level lines in sketching the contours. The instrument sold under this name is made with a spirit level ; but the substitute, as described above, answers the purpose equally well, and moreover, from its
 being made merely of pasteboard, fits into the pocket of the sketching portfolio.

The slopes most necessary to note on a military sketch are those which relate to the facilities of ascent for artillery, cavalry, and infantry. According to the "Aide Mémoire," a slope of about
60°, or of 4 to 7 , is inaccessible for infantry.
45°, or of 1 to 1 , difficult.
If 30°, about 7 to 4 , inaccessible for cavalry.
15°, , 4 to 1 , inaccessible for wheel carriages.
5°, , 12 to 1 , easy for carriages.
The leading features of ground are the summit ridges of hills (sometimes termed the water-shed lines), and the lowest parts of the valleys, down which the rain finds its way to the nearest rivers

[^30]
or pools, called water-course lines. These two directing lines, if traced with care, will alone give some idea of the surface of the country, and assist materially in sketching the hills, particularly if drawn on the horizontal system, as the contour lines alroays cut the ridges and all lines of greatest inclination at right angles. It is a very common error, in first beginning to sketch ground, to regard hills as isolated features, as they often appear to the eye. Observation, and a slight practical knowledge of geology, inevitably produce more enlarged ideas respecting their combinations; and analogy soon points out where to expect the existence of fords, springs, defiles, and other important features incidental to peculiar formations. Thus appearances that at one time presented nothing but confusion and irregularity, will, as the eye becomes more experienced, be recognised as the results of general and known laws of nature.

The representation of the outline of the hills, and their relative command, is also materially assisted in a topographical plan, and more particularly in a military reconnaissance, by a few outline sketches taken from spots where the best general views can be obtained., A series of these topographical sketches running along the length of a range of hills, and a few taken perpendicular to this direction, supply in some degree the place of longitudinal and transverse sections; and give, in addition to the information communicated by a mere section, a general idea of the nature of the surrounding country.

A good judgment of distances is indispensable in sketching ground, even in filling up the interior of a survey, and more particularly in a reconnaissance, where there has not been either time or means for accurate measurement and triangulation. Practising for a few days will enable an officer to estimate with tolerable accuracy the length and average quickness of his ordinary pace, as also that of his horse (as on a rapid reconnaissance he must necessarily be mounted); and the habit of guessing distances, which can afterwards be verified, will tend to correct his eye. A micrometical scale* in the eye-piece of his field telescope, with a corresponding table of distances, is also a very useful auxiliary; and the gradual

[^31]blending of colours, the angles subtended at different distances by objects of known dimensions, such as the height of a door, or a man, and the well-known rate at which sound has been ascertained to travel", will all materially assist him. According to the "Aide Mémoire," the windows of a large house can generally be counted at the distance of 3 miles; men and horses can just be perceived as points at about 2200 yards; a horse is clearly distinguishable at 1300 yards; the movements of a man at 850 yards; a man's head clearly visible at 400 yards; and partially so between that distance and 700 yards.

These directions, however, cannot be considered as infallible, as the power of vision differs so materially; but nothing can be more easy than for an officer to make a scale of this kind for himself.

Another easy mode of judging distances is by marking on a scale or pencil held at some fixed distance from the eye, the apparent diameter or height, at different measured distances, of any objects the dimensions of which may be considered nearly constant; the average height of a man, a house of one or two stories, the diameter of a windmill, \&c., will furnish suitable standards; and a short piece of string, with a knot to hold between the teeth, will serve to keep the pencil always at the proper distance. Suppose these scales to have been carefully marked for four or five of these objects, at the distance of $150,200,300, \& c$., yards, they will evidently afford the means of obtaining an approximate distance; but even without this scale, if the pencil b be held up to the eye at any distance a, and the height or diameter of any object h of

[^32]known dimensions be observed, then the distance from this object is evidently $\frac{h \times a}{b}$.

In reconnoitring the outline of a work which cannot be approached closely, for the purpose of tracing parallels and determining the positions of batteries, the best plan is to mark, if possible, the intersections of the prolongations of the faces and flanks with the line on which the distances are being paced or measured, instead of merely obtaining intersections of the salient and re-entering angles with a sextant. Soon after sunrise, or a little before sunset, are the best times for these observations, as lights and shades are then most strongly marked; in the middle of the day it is often impossible to distinguish anything of the outline of a work of low profile, even at the distance of 200 or 300 yards.

If the perpendicular distance from the angle, or any other point of the face of a work, is required to be ascertained in the field; and the line marked on the ground for the purpose of laying out a battery, it can be readily done by the following method:-

Fig. 1.

Fig. 2

Suppose, in each of the figures above, A to be the point from which the distance is required on a line perpendicular to $A B$; measure any distance $C D$, in a direction nearly parallel to $A B$, and take the angles at C and D, formed by the line $C D$, and each of the points A and $B ; B$ being some marked object, situated anywhere on
the line of the work, probably a salient or re-entering angle. From these data ascertain the values of $A B$, and the angle $A B D$, either by calculation or by any of the practical methods already described; BE is then the secant of the angle ABD to radius AB, and the difference DE between this quantity (to be found by means of a table of secants), and the calculated distance $B D$ being laid off either on the line $D B$ from D towards B (as in fig. 1), or on the prolongation of this line (as in fig. 2), the distance $A E$ becomes the tangent of the same angle also to the radius $A B$; and the distance required for the battery can therefore be laid off on the ground by increasing or diminishing the length of this line AE.

The direction of the capital of a work, and the distance from its salient, can be thus determined in the field.
$O n$ any line $O Q$, mark two points, O and \mathbf{P}, in the prolongation of the faces, the distance between them being measured or paced. Take any other point R, one hundred paces or any convenient distance from P and make the angle
 PRT equal to that observed at 0 ; T being in the prolongation of SP. The triangles OSP and RTP are therefore similar, and the angle T being bisected by the line TV, it results that RP:PV:: PO: PX; which distance, laid down on the line PO, gives the point X required in the prolongation of the capital. The sides of the small triangle TPR and TV being all capable of measurements, $O S, S P$, and $S X$ can, if required, be all found by a similar simple proportion*.

It is, however, generally practicable to obtain a plan of any attacked work and of its environs, more or less correct; and on this

[^33]any perceptible errors discovered during the reconnaissance are marked. On approaching a place by day, the officer should be alone, so as to attract little attention; but supported at a distance by troops, hid from observation by any cover that can be taken advantage of. By night he should be accompanied by a strong party; and by advancing as near as possible towards daybreak, and retiring gradually, he would be enabled to make more correct observations as to the outline and state of repair of the works than at any other time.

The numerous conventional signs recommended in most continental military works are extremely puzzling, difficult to remember, and are mostly unintelligible. In a little work, the "Aide Memoire Portatif," published in 1834, there are no less than ten pages devoted to these signs. Beyond the few that are absolutely necessary, and generally understood, it is far better to trust to references written on the face of the sketch, and the explanatory report, than by endeavouring to convey so much information by these conventional symbols and attempts at mathematical representations of the ground, to render a drawing so confused and difficult to comprehend that it really becomes of less value than an indifferent sketch with copious and clear remarks.

Below are given a few conventional signs, applicable only to military sketches :-

I-Telegraph.
ee-Post-house.
Mortar Battery.
\square Gun Battery.
क才 Site of an Engagement.
θ Passable.

+ -Impassable for Cavalry.
* Impassable forInfantry.

Frement Abatis.
On the following page are those of most general use in topographical plan-drawing: the boundary lines are those employed in the Ordnance Survey; a similar arrangement could of course be adopted to mark the divisions of any other country, however they may be designated.

n - Smithiea. A amall horso-shoe with the open side turned towards the road.

Q Limekiln.

\Longrightarrow Cross roads. Narrower, and both sides alike.
Railroads. Both sides dark, very narrow, and perfectly parallel.
$\Longrightarrow-$ Canals. Distinguished from roads by the parallelism of the sides, the locks, and bridges, and by having the side rext the light shaded like rivers. Canals and navigable rivers to be coloured blue.

A-_Trigonometrical point.

BOUNDARIES.

CHAPTER VI.

LEVELLING.

Thr method of ascertaining the difference of level between stations on a trigonometrical survey by means of reciprocal angles of elevation and depression, has already been alluded to in page 32, and detailed sections of ground can be taken in the same manner, though not so conveniently or accurately as with a spirit level. It is however necessary, before entering upon this subject, to explain more fully the two corrections that must be applied to all vertical angles when used for the purpose of obtaining relative altitudes between stations a considerable distance apart, which were referred to in the chapter upon Triangulation. If they are only separated by a few hundred yards, the corrections are too trifling to have any appreciable effect upon the result.

Considering the earth as a sphere, any number of points upon its surface equidistant from its centre are on the same true level; but the apparent level (and of course, the apparent altitude or depression) is vitiated by these two causes of error, curvature and terrestrial refraction; the correction for the first of which depends upon the "arc of distance," which is that contained between the two stations at the centre of the earth; and the second upon their comparative elevations above the horizon.

The effect of the curvature of the earth is to depress any object below the spectator's sensible horizon. Every horizontal line is evidently a tangent to the surface of the globe at that spot; and the difference between the apparent and true level at any distant point B (putting the effect of refraction for the present out of the question) will be seen, by reference to the accompanying figure, to be the excess ($\mathbf{B} \mathbf{D}$) of the secant of the arc $\mathbf{A} \mathbf{D}$, above the radius C D.

Putting \boldsymbol{a} for the arc AD, \boldsymbol{t} for the tangent AB (the horizontal line, or line of apparent level), r for the radius A C, or D C; and \boldsymbol{x} for the excess of the secant B C above the radius or the difference between the true and apparent
 level. Then $(r+x)^{2}=r^{2}+t^{2}$. Whence $x(2 r+x)=t^{2}$; and, owing to the small proportion that any distance measured on the surface must bear to the earth's radius, $2 r$ may be substituted for $(2 r+w)$, and the arc a for the tangent $t ; 2 r x$ then becomes $=a^{2}$, and $x=\frac{a^{2}}{2 r,}$ which, assuming the mean diameter of the earth at 7916 miles, gives $x=8.004$ inches or 667 of a foot for one mile; which quantity increases as the square of the distance. Or otherwise,
$2 r+x: t: t: x$,
or $2 r: a:: a: x, x$ being omitted in the expression $(2 r+x)$ and a substituted for t; whence $x=\frac{a^{2}}{2 r}$ as before.

A very easily remembered formula, derived from the above, for the correction for curvature in feet, is two-thirds of the square of the distance in miles; and another, for the same in inches, is the square of the distance in chains divided by 800*.

The second correction, terrestrial refraction, on the contrary, has the effect of elevating the apparent place of any object above its real place, and consequently, above the sensible horizon. The rays of light bent from their rectilinear direction in passing from a rare into a denser medium, or the reverse, are said to be refracted;

[^34]and this causes an object to be seen in the direction of the tangent to the last curve at which the bent ray enters the eye, as in the last figure.
A is any station on the surface of the earth, the sensible horizon of which is $A B ; C$ and D are two stations on the summits of hills, of which C is supposed in reality to be situated on the horizontal line AB, and D above it, the angle of elevation of which is BAS. Owing, however, to the effects produced on the rays from these objects, in their passage to the eye, by the atmosphere through which they pass, they are seen in the directions As and Ab, tangents to the curve described by the rays, and BA b, and SAs, are the measures of the respective terrestrial refractions.

Above eight or ten degrees of altitude, the rate at which the effects of refraction decrease as the altitudes increase (varying with the temperature and density of the atmosphere), is so well ascertained, that the refraction of the heavenly bodies for any altitude may be obtained with minute accuracy from any of the numerous tables compiled for the purpose of facilitating the reduction of astronomical observations; but when near the horizon, the refraction, then termed terrestrial refraction, is so unequally influenced by the variable state of the atmosphere that no dependence can be placed upon the accuracy of any tabulated quantities*. The rays are sometimes affected laterally, and they have been even seen convex instead of concave. Periods for observing angles of depression and elevation, particularly if the distances between the stations are long, should therefore be selected when this extraordinary refraction is least remarkable; morning and evening are the most favourable; and the heat of the day after moist weather, when there is a continued evaporation going on, is the least so.

It is a common custom to estimate the effects of refraction at some mean quantity, either in terms of the curvature, or of the arc of distance. The general average in the former case is $\frac{1}{\frac{1}{4}}$ of the curvature, making the correction in feet for curvature and refraction combined $=\frac{4}{7} \mathrm{D}^{2}, \mathrm{D}$ being the distance in miles as before. In the latter the proportion varies consideraby \dagger; and General Roy,

[^35]in the operations of the trigonometrical survey, assumed it at $\frac{1}{10}$, and sometimes at ${ }_{1}{ }_{1}$, in cases where it had not been ascertained by actual observation of reciprocal angles of elevation or depression, by the following simple method *. These angles should, to insure accuracy, be observed simultaneously, the state of the barometer and thermometer being always noted :-

In the accompanying figure, \mathbf{C} represents the centre of the earth, A and B the true places of two stations above the surface $\mathrm{SS} ; \mathrm{AD}$, BO are horizontal lines at right angles to the radii AC, BC; a and b are also the apparent places of A and B.

In the quadrilateral $A E B C$, the angles at A and B are right angles, therefore the sum of the angles at E and C are equal to two right angles; and also equal to the three angles, A, E, and B, of the triangle AEB; taking away the angle E common to both, the angle C, or the arcSS, remains $=$ EAB + EBA; or, in other words, the sum
 of the reciprocal depressions below the horizontal lines AD, BO, represented by $\mathrm{A} \mathrm{E}+\mathrm{EBA}$, would be equal to the contained arc if there were no refraction. But a and b being the apparent places of the objects A and B, the observed angle of depression will be $\mathrm{DA} b, \mathrm{OB} a$; therefore their sum, taken from the angle $\mathrm{C} \dagger$ (the contained arc of distance), will leave the angles $b \mathrm{AB}, a \mathrm{BA}$, the sum of the two refractions; hence, supposing half that sum to be the true refraction, we have the following rule when the objects are reciprocally depressed. Subtract the sum of the two depressions from the contained arc, and half the remainder is the mean refraction:-

If one of the points B, instead of being depressed, be elevated suppose to the point g, the angle of elevation being $g \mathrm{AD}$, then

[^36]the sum of the two angles, e AB and EBA, will be greater than EAB + EBA (the angle C, or the contained arc) by the angle of elevation, $e \mathrm{AD}$; but if from $e \mathrm{AB}+\mathrm{EBA}$, we take the depression $\mathrm{OB} a$, there will remain $e \mathrm{AB}+a \mathrm{BA}$, the sum of the two refractions; the rule for the mean refraction then in this case is, subtract the depression from the sum of the contained arc and the elevation, and half the remainder is the mean refraction*.

The refraction thus found must be subtracted from the angle of elevation as a correction, each observation being previously reduced, if necessary, to the axis of the instrument, as in the following example, taken from the Trigonometrical Survey :-At the station on Allington Knoll, known to be 329 feet above low water \dagger, the top of the staff on Tenterden steeple appeared depressed by observation $3^{\prime} 51^{\prime \prime}$, and the top of the staff was $3 \cdot 1$ feet higher than the axis of the instrument when it was at that station. The distance between the stations was 61,777 feet, at which $3 \cdot 1$ feet subtend an angle of $10^{\prime \prime} \cdot 4 \ddagger$, which, added to $3^{\prime \prime} 51^{\prime \prime}$, gives $4^{\prime} 1^{\prime \prime} 4$ for the depression of the axis of the instrument, instead of the top of the staff. On Tenterden steeple, the ground at Allington Knoll was depressed $3^{\prime} 35^{\prime \prime}$; but the axis of the instrument, when at this station, was $5 \cdot 5$ feet above the ground, which height subtends an angle of $18^{\prime \prime} 4$: this, taken from $3^{\prime} 35^{\prime \prime}$, leaves $3^{\prime} 16^{\prime \prime} 6$ for the depression of the axis of the instrument.

[^37]Contained arc 61,777 feet $=$. $10^{\prime} 6^{\prime \prime}$ nearly.
Sum of depression, $4^{\prime} 1^{\prime \prime \cdot} 4+3^{\prime} 16^{\prime \prime} \cdot 6$. . . 718
248
Mean refraction 124
which in this example is nearly $\frac{3}{4}$ of the contained arc.
This, added to the depression at Allington Knoll, $3^{\prime} 16^{\prime \prime \prime} 6$, gives $4^{\prime} 40^{\prime \prime} \cdot 6$ for the angle corrected for refraction; which, being $22^{\prime \prime} .4$ less than $5^{\prime} 3^{\prime \prime}$, half the contained arc, the place of the axis of the instrument at Allington Knoll is evidently above that at the other station by 6.7 feet, the amount which this angle $22^{\prime \prime} .4$ subtends. This, taken from 329, leaves $322 \cdot 3$ feet for its height when on Tenterden steeple, corrected both for refraction and curvature. The result would have been the same if these corrections had been applied separately, as before described.

Correction for curvature.
$\mathrm{D}=61,777$ feet $=11 \cdot 7$ miles, log. $1 \cdot 0681859$

$$
\begin{array}{r}
136 \cdot 89=2 \cdot 1363718 \tag{2}\\
2
\end{array}
$$

3)273.78

Curvature $=91 \cdot 26$
Angle of depression, corrected for refraction:
Sine $4^{\prime} 40^{\prime \prime} 6=\log .7 \cdot 1336617$
61777 feet $\quad 4.7908268$

$$
84 \cdot 405 \quad 1.9244885
$$

Then $+91 \cdot 26$
-84.405
6.855 feet.

By employing the observation from Tenterden steeple, and estimating the refraction at $\frac{1}{\$}$ of the curvature, or using the expression $\frac{4}{7} \mathrm{D}^{2}$ for both corrections, the difference of level between these stations would appear about 12 feet greater; which shows how necessary it is, when accuracy is required, to ascertain the re-
fraction at the time by reciprocal angles of depression or elevation. In another example (page 178, vol. i. "Trigonometrical Survey"), where the depression was observed to the horizon of the sea, the dip of the horizon* is calculated from the radius of curvature, and the known length of a degree. The difference between this calculated depression and that actually observed is, of course, due to refraction.

To return to the subject of the different methods of taking sections of ground, either-

By angles of elevation and depression with the theodolite.
By the spirit, or water-level; or the theodolite used as a spiritlevel.

By the old method of a mason's level and boning-rods, and also by the French reflecting level.

The relative altitude of hills, or their heights above the level of the sea, or other datum, can also be ascertained by a mercurial mountain barometer; the lately-invented Aneroid; or by the temperature at which water is found to boil at the different stations whose altitudes are sought.

Levelling for sections by angles of elevation and depression with the theodolite is thus performed \dagger :-The instrument is set up at one extremity of the line, previously marked out by pickets at every change of the general inclination of the ground; and a levelling-staff, with the vane set to the exact height of the optical axis of the telescope, being sent to the first of these marks, its angle of depression or elevation is taken; by way of insuring accuracy, the instrument and staff are then made to change places, and the vertical arc being clamped to the mean of the two readings, the cross wires are again made to bisect the vane. The distances may either be chained before the angles are observed, marks being left at every irregularity on the surface where the levelling-staff is required to be placed, or both operations may be performed at the same time, the vane on the staff being raised or lowered till it is

[^38]bisected by the wires of the telescope, and the height on the staff noted at each place.

The accompanying sketch explains this method :-A and \mathbf{B} are the places of the instrument, and of the first station on the line where a mark equal to the height of the instrument is set up; between these points the intermediate positions, a, b, c, d, for putting up the levelling-staff, are determined by the irregularities of the ground. The angle of depression to \mathbf{B} is observed, and if great

accuracy is required the mean of this and the reciprocal angle of elevation from \mathbf{B} to \mathbf{A} is taken, and the vertical arc being clamped to this angle, the telescope is again made to bisect the vane at B. On arriving at B, after reading the height of the vane at a, b, c, \&c., and measuring the distances $\mathbf{A a}$, \&c., the instrument must be brought forward, and the angle of elevation taken to C; the same process being repeated to obtain the outline of the ground between B and C. In laying the section down upon paper, a horizontal line being drawn, the angles of elevation and depression can be protracted, and the distances laid down on these lines; the respective height of the vane on each staff being then laid off from these points in a vertical direction, will give the points $a, b, c, \& c$., marking the outline of the ground. A more correct way of course is to calculate the difference of level between the stations, which is the sine of the angle of depression or elevation to the hypothenusal distance AB considered as radius, allowing in long distances for curvature and refraction, which may be ascertained sufficiently near by reference to the tables.

The distances, instead of being measured with the chain, may, if only required approximately, be ascertained by means of a micrometer, attached to the eye-piece of the telescope ${ }^{*}$.

[^39]Instead of only taking the single angle of depression to the distant station B, and noting the heights of the vane at the intermediate stations, $a, b, c, \& c c$., angles may be taken to marks the same height as the instrument set up at each of these intermediate points, which will equally afford data for laying down the section; but the former method is certainly preferable.

The details may be kept in the form of a field-book * but for this species of levelling, the measured distances and vertical heights can be written without confusion on a diagram, leaving the corrections for refraction and curvature (when necessary) to be applied when the section is plotted.

Where a number of cross sections are required, the theodolite is particularly useful, as so many can be taken without moving the instrument. It is also well adapted for trial sections, where minute accuracy is not looked for, but where economy both of time and money is an object.

The theodolite is likewise used in running check levels to test the general accuracy of those taken in detail with a spirit level. Reciprocal angles of elevation and depression, taken between bench marks \dagger whose distances from each other are known, afford a proof of the general accuracy of the work; and if these points of reference are proved to be correct, it may safely be inferred that the intermediate work is so likewise.

Instead, however, of observing reciprocal angles of elevation and depression between marks at measured distances, levelling for sections, where minute accuracy is required, is performed with a spirit level, or some instrument capable of tracing horizontal lines. The different instruments used for the purpose, and their adjustments, will be first described; and the most approved methods of using them, and keeping the field-book, as well as plotting the detail on paper, will be afterwards explained.

The species of level formerly in general use, termed the Y level,

[^40]owes its name to the supports upon which the telescope rests. This instrument, as well as Mr. Troughton's improved level, and the dumpy level introduced by Mr. Gravatt, are described at length in Mr. Simms' "Treatise on Mathematical Instruments." It is decidedly inferior to the two last mentioned, its only claim to notice when compared with them being the greater ease with which its adjustments are made; though this advantage is again partially negatived by the equal facility with which they are deranged.

The first adjustment in the Y level is for the line of collimation; and the method is the same as that described in page 23 for the theodolite, half the error being corrected by the screws acting upon the diaphragm containing the cross hairs.

The second adjustment (that of the spirit level attached to the telescope) is also similar to that for the theodolite*. After the air-bubble has been brought into the centre by the plate-screws, the telescope is reversed in the supports, and if it has moved to either end of the level, it is brought back to its central position, one half by the screw at one end of the level, and the other half by the plate-screws, there being no vertical motion as in the theodolite. This correction will probably require two or three repetitions.

The third adjustment is for the purpose of bringing the Y supports exactly on the same level when the previous corrections have been made, so that the optical axis of the telescope may always revolve at right angles to the vertical axis of the instrument. This is effected by first levelling the telescope when placed over two opposite screws, and then turning it round so that the eye-piece and the object-glass may change places. If in this reversed position the bubble is no longer in the centre, it must be adjusted, one half being done by turning the milled headed screw A, placed directly below one of the Ys , which is thereby raised or lowered in its socket, and the other half

[^41]by the plate-screws. This operation must be repeated with the other pair of plate-screws, and care must be talen that the screw represented by A in the sketch is never touched except for the purpose of making this adjustment.

In Troughton's instrument, the spirit level, being fixed to the telescope, has no separate means of adjustment, and the line of collimation must therefore be determined by its assistance. The telescope also, being bedded in a sort of frame, cannot be reversed end for end; the level is first adjusted by correcting half the error when turned round, by the screws which act upon the supports, and half by the plate-screws; the line of collimation is then made to agree with the corrected level by noting the height of the intersection of the cross wires on a staff about 200 or 300 yards distant. The instrument and the staff are then made to change places, and if the difference of level remains the same, the optical axis is already correct; if not, half the difference of the results must be applied to the observed height of the vane on the staff, and the cross wires adjusted to this height by means of the screws of the diaphragm at the eye-piece of the telescope.

A pool of water furnishes another easy mode of adjusting the line of collimation. A mark being set up at any convenient distance of exactly the same height above the surface of the water as the instrument adjusted for observation, the cross wires have only to be made to intersect each other at this point.

The adjustments of Mr. Gravatt's level (the best of the three) are nearly similar; and will be found described by himself, in Mr. Simms' little work, already quoted*.

The French water level is much used on the Continent, in taking sections for military purposes. It possesses the great advantage of never requiring any adjustment, and does not cost one-twentieth part of the price of a spirit level. From having no telescope, it is impossible to take long sights with this instrument; and it is not of course susceptible of very minute accuracy; but, on the other hand, no gross errors can creep into the section, as may be the case with a badly-adjusted spirit level or theodolite, the horizontal line being adjusted by nature without the intervention of any mechanical contrivance. As this species of level

[^42]is not generally known in England, the following description is given; which, with the assistance of the sketch, will enable any person to construct one for himself without further aid than that of common workmen to be found in every village*.
$a b$ is a hollow tube of brass about half an inch in diameter, and about three feet long, c and d are short pieces of brass tube of larger diameter, into which the long tube is soldered, and are for the purpose of receiving the two small bottles e and f, the ends of which, after the
 bottoms have been cut off by tying a piece of string round them when heated, are fixed in their positions with putty or white lead -the projecting short axis g works (in the instrument from which the sketch was taken) in a hollow brass cylinder h, which forms the top of a stand used for observing with a repeating circle; but it may be made in a variety of ways so as to revolve on any light portable stand. The tube, when required for use, is filled with water (colored with lake or indigo), till it nearly reaches to the necks of the bottles, which are then corked for the convenience of carriage. On setting the stand tolerably level by the eye, these corks are both withdrawn \dagger, and the surface of the water in the bottles being necessarily on the same level, gives a horizontal line in whatever direction the tube is turned, by which the vane of the levelling-staff is adjusted. A slide could easily be attached to the outside of c and d, by which the intersection of two cross wires could be made to coincide with the surface of the water in each of the bottles; or floats, with cross hairs made to rest on the surface

[^43]of the fluid in each bottle, the accuracy of their intersection being proved by changing the floats from one bottle to the other : either of these contrivances would render the instrument more accurate as to the determination of the horizontal line of sight; though one of its great merits, quickness of execution, would be impaired by the first, and its simplicity affected by either of them. For detailed sections on rough ground where the staff is set up at short distances apart, it is well qualified to supersede the spiritlevel, and is particularly adapted to tracing contour lines: which operation will be described in its proper place.

A mason's level and boning-rods also answer very well for taking sections where no better instruments are at hasd, and are used as described below.

A horizontal line is obtained by driving two pickets (1 and 2) into the ground, and applying a large mason's level to their heads, which should be previously cut square. The pickets 2 and 3 , 3 and 4, \&cc., can be levelled in the same manner, as far as may be necessary, to obtain a correct horizontal line for a short distance; but if any considerable length is required, two boning - rods, of about three feet long, with a cross-piece at the top, are placed on the heads
 of any two of the pickets already levelled, and the vane of a staff raised or depressed at any required point, till it is on a level with the tops of the boning-rods. The reading of the staff will give the respective depths below the level of the heads of the rods, the heights of which must be subtracted. Boning-rods are chiefly used in laying out slopes in military works, and for setting up profiles to direct working parties. A slope of 5 to 1 , for instance, is laid out by measuring 5 feet from a towards b, and driving the head of the picket at the end nearest b, one foot lower than that at a; the heads of boning-rods, of equal height, placed on the tops of these pickets, are evidently on a slope of 5 to 1 .

The last description of instrument used for levelling is the French
" Reflecting Level," invented by Colonel Burel; a description of which, is given in the second volume of "Professional Papers of the Royal Engineers."

The principle upon which this instrument acts is implied by its name. In a plane mirror the rays are reflected as though they diverged from a point behind the mirror, situated at precisely the same distance in rear of its surface, as the object itself is in front. If the mirror be vertical, the eye and its image are on the same horizontal line; and any object coinciding with these is necessarily on the same level. It appears then only requisite to ensure the verticality of a small piece of common looking-glass set in a frame of wood or metal, to be able without further assistance to trace contour lines in every direction, or to take a section on any given line. The mirror AB, described in the paper alluded to, is only one inch square, fixed against a vertical plate of metal weighing about 1 lb ., and suspended from a ring m, by a twisted wire n, so that it may hang freely, but not turn round on its axis of suspension. It can either be used for sketching in the field, being held by this ring at arm's length; or fixed, for greater accuracy, in a frame which fits upon the top of the legs of a theodolite, with a bar of metal like a bent lever, pressing so slightly against it from below, that it may check any tendency to oscillation, and at the same time not prevent the mirror from adjusting itself vertically by its own weight. The accompanying sketch will render this description more intelligible.

The required verticality of the plane of the mirror is thus ascertained: a level spot of ground is chosen, where it is suspended in its frame (or any temporary stand) 40 or 50 yards from a wall, and the prolongation of the line of sight from the eye to its image, coinciding with a fine silk thread across the centre of the mirror, is marked on the wall, which is visible through a small opening p, in the metal frame. The mirror is then turned round, and the observer, placed between it and the wall, with his back to the latter, notes the spot where the image of his eye
coincides with the reflected wall above or below the former mark. The mean distance between these two points is assumed and marked; and, by turning the screw r, the centre of gravity of the mirror is altered until the image of the eye coinciding as before with the silk thread agrees also with this central mark on the wall. It would perhaps be a better plan to send an assistant some distance behind the mirror with a levelling-staff, the vane of which could be raised or lowered to coincide with the line of sight; on reversing the mirror (the staff remaining stationary) the vane would be again moved, until its refleted zero mark is cut by the thread on a level with the image of the eye, and finally, the mirror adjusted by the screw, to the mean between these two heights; this method admits, apparently, of greater nicety than a chalk mark on a rough wall.

The reflecting-level is not generally known in this country; but for many purposes it is superior to any other description of instrument, particularly for tracing contour lines on the ground in a military sketch. It is peculiarly simple in its construction; is easily managed, easily adjusted, is not liable to have this adjustment deranged, or to be injured by a fall; is from its size, more portable than any other instrument, and can be used either held at an arm's length, or at a distance of several feet; in which position, the length of the line of sight ensures the greatest accuracy.

The levelling-staff, a necessary accompaniment to each of the species of levelling instruments described, was formerly made with a sliding vane to move up and down a staff graduated to feet and decimals, or feet and inches: this was effected by a string and pulley, or the staff itself was made in two or three pieces, each of the upper pieces sliding in a groove in the one next below it. For any height less than the length of the first piece (generally about 6 feet) the vane was slid up or down with the hand; but for a greater height, the second piece, with the vane at the top, was moved up bodily till the centre of the vane was cut by the line of the optical axis of the instrument, when the height was read on another scale graduated doconvards from the top on the side of the lower joint of the staff. A description of staff was however introduced some years ago by Mr. Gravatt, and has been since improved upon, on which the divisions (in feet and decimals) are
marked so distinctly that they can be read by the observer without the use of a vane, or the necessity of trusting to an assistant; the figures are inverted to suit the inverting telescopes now generally used, and instead of moving about a heavy iron tripod on which to rest the staff, a species of shoe with a hinge is attached to it, which allows the face to be turned round in any required direction without the staff being moved off the ground. Though much more convenient, and less liable to mistakes in reading than the old species of staff, the same degree of accuracy cannot be obtained with it.

To proceed to the method of using the spirit-level or other instrument for tracing horizontal lines, and also of keeping the field-book in levelling for sections. In the system formerly pursued, the instrument was set up, at one end of the line A, of which a section was required; and having ascertained the accuracy of its adjustments, and levelled it by the plate-screws, an assistant was sent forward with the levelling-staff to the first station, and the difference between the height of the vane when intersected by the cross wires of the telescope, and the height of the optical axis of the instrument from the ground, gave of course the difference of level between these two points. The distance was then measured and entered in the field-book, and the level moved on to the first station, the staff being sent on to the second, where the same process was repeated.

It is self-evident that this manner of levelling is vitiated by the

errors of curvature and refraction, which, if not allowed for in a long section, would in the end produce a considerable error. But the necessity for these corrections is avoided by simply placing the instrument half-way between the two stations, and either in the line of section, or on one side of it.

Thus the level * being set up, as in the figure at a, the difference between the reading on the staff set at the back station A, and at

the forward station (1), gives at once the difference of level between the ground at these points, without any correction for refraction or curvature, and also without taking into account the height of the instrument; a slighterror in the line of collimation of the telescope also does not impair the results, as the elevation or depression of the optical axis would have the same effect on both staves; whereas in levelling entirely by the forward station, the least error in the adjustment of the instrument is fatal to the accuracy of the section, being always carried on, whether additive or subtractive. This assertion, however, supposes the instrument to be exactly equidistant from the two stations, which in ground having a great inclination is often impossible; nevertheless, by good management, any reference to the table of curvature and refraction may generally be avoided, and if this correction is necessary, it should be made merely for the difference between the distances.

In keeping the detail in the field, the horizontal and vertical distances are sometimes written on a sort of rough diagram, as recommended in levelling by angles of elevation and depression with the theodolite; but the most general and best plan is to enter all the dimensions in the field-book, particularly if the distance to be levelled is considerable, and references are made to benchmarks. There are slight differences in the modes in which this field-book is kept; but the following example, with the description

[^44]below, will show the usual method of entering the details, so as to render them at once available for transferring to paper *:-

	Back Sight.	Fore Sight.	+	-	Rise.	Fall.	REMARES.
250	2.35	14.55	-	12.20	-	12.20	Commenced at bench-mark A.
200	3.56	9.58	-	6.02	-	18.22	
250	$10 \cdot 34$	6.21	$4 \cdot 13$	-	-	14.09	Crosses hedge into road.
270	14.55	0.25	14.30	-	0.21	-	Bench-mark on oak tree, in hedge close to fourth milestone.
200	9.98	1.67	8.31	-	8.52	-	
250	$3 \cdot 62$	14.54	-	10.92		$2 \cdot 40$	
B. M.	1.23	13.45	-	12.22		14.62	B. M. on sill of canal lock.
300	$2 \cdot 23$	12.05	-	9.82 18.35	-	$24 \cdot 44$	
250	0.20	18.55		13.35		87.79	Mark centre of road.
	48.06	$\begin{aligned} & 85.85 \\ & 48.06 \end{aligned}$	$26 \cdot 4$	$\begin{aligned} & 64 \cdot 53 \\ & 26 \cdot 74 \end{aligned}$			
		37.79		37.79			

This table almost explains itself: the first column headed "Distances," contains the distances measured between each place where the staff is put upt. The second and third columns are for the readings of the staff at each back and forward station, the differences between each of which are entered under the fourth and fifth columns, headed + and --: under the two last, headed "Rise" and "Fall," are carried out the total rise or fall of each place where the staff was placed, above or below the starting point.-The bench-mark at the end of the fourth station being in the line of the section, the distance is entered as usual; but that at the seventh, being out of this line, and its level merely ascertained for a future reference, there is no dimension entered in the column of "Distances," so that it is not plotted in the section.

[^45]Under the head of "Remarks" are noted the bearings* of the different lines of the sections if required to be laid down on a plan; the references to bench-marks; cross-sections; and other information that may subsequently prove useful. If the instrument is placed in the direct line of the section, it will give an intermediate point on the ground between the staves, by measuring its height; this requires again another column, and leads to confusion, without being of much benefit. The difference of the sum of all the back and forward sights should of course correspond with the difference between the quantities under the head of + and ——, and also with the last reduced level, either rise or fall.

In taking trial sections with the spirit-level, to ascertain the best line for a railway or other work, the same form applies as for sections for more particular purposes, either civil or military; but the distances may be longer, as was observed when speaking of the theodolite. The same bench-marks should be always levelled up to in every trial section.

In running check sections, to ascertain the accuracy of former sections, there is generally no occasion for measuring distances: and only a column for "back," and another for "fore" sights, with a third for remarks, are required.

B. S.	P.S.	RkMarg.

At each bench-mark these columns may be added up, and their difference entered under the column of "Remarks." As already stated, check sections are more quickly taken with a theodolite by reciprocal angles of elevation and depression than by the spiritlevel.

In laying down a section on paper, particularly if the ground

[^46]is of gentle slope and the section of considerable length, it is usual to exaggerate the vertical heights for the purpose of rendering the undulations of the surface perceptible, which necessarily produces a distorted representation of the ground. The horizontal scale is usually made an aliquot part of the vertical, that the proportions between them may be at once obvious. Scales of $25,50,100$ or 150 feet to one inch*, are appropriate for the latter, according to the degree of detail required in the section; and the horizontal scale may be from $\frac{1}{d}$ to ${ }_{i}^{1} \frac{1}{\delta}$ of either of them; or even a less proportion if the section is of great length, and the ground generally flat, as in the figure below, plotted from the specimen of a levelling field-book in page 87.

The horizontal line from which the vertical distances are set off, may be either on a level with one end, or some one point of the section; or a datum line may be drawn any number of feet above or below this line, exceeding the sum of all the vertical heights: this latter arrangement makes all the dimensions reduced for plotting either plus or minus. Laying off intermediate horizontal and vertical distances, should be avoided in plotting sections; the former ought always to be measured from the commencement of the section, with as few interruptions as the length of the line will allow; and the latter from the datum line. Both horizontal and vertical distances should, particularly in a working section, be written legibly on the drawing.

Trial sections that have been run for the purpose of ascertaining the best of several routes for a railroad, canal, or other work, should invariably be all plotted on the same scale and paper, and from the same datum line; and commencing at, and having refe-

[^47]rence to, the same points as bench-marks. By this arrangement their comparison by the eye is facilitated.

Cross or transverse sections are sometimes plotted above, and sometimes belovo the longitudinal section: and if only extending a few feet to the right and left, they are occasionally plotted on the line of section : but, if numerous, this last method causes a confused appearance in the drawing.
A method of combining plan and section has lately been introduced by Mr. Macneil, for the purpose of giving a popular representation of the quantity of excavation and embankment at any part of the section of a line of railway, the direction of which is shown on the outline plan of the country through which it passes by a thick black line, supposed to represent a vertical section of the rail. From the accurate section previously drawn, the heights of the embankments and depths of excavation at the different parts of the line are transferred to this datum line on the plan; and these quantities being tinted

with different colours, or, if engraved, represented the one with vertical, and the other with horizontal lines, show at a glance the general relative proportions of cutting or embankment, as in the annexed figure.

The dark line in both figures represents the surface of the railroad or embankment.

To those unaccustomed to the use of sections, this simple contrivance by which they are rendered intelligible is particularly useful, and has been ordered to be adopted in all plans for railways submitted to the House of Commons. Of course it is only intended to give a general idea of the quantity of work on any line of road, railroad, or canal, and to be explanatory of the report and estimate.

The section which has always to accompany this species of plan must be plotted on a scale, the horizontal distances being not less than 4 inches to 1 mile, and the vertical not less than 100 feet to 1 inch. A line must also be drawn on the section representing the upper surface of the rails. At each change of inclination the height above some datum plane must be shown, and also the rates of the slopes, and the distances for which these gradients are maintained. The height of the railway over or under any turnpike road, navigable river, canal, or other railway, is likewise to be marked at the crossing. A variety of precautions and regulations are enforced by the "Standing Orders" relative to the construction of railways; and there are numerous other details connected with them, for which reference must be made to some of the numerous excellent practical works devoted solely to this branch of civil engineering.

Numerous transverse sections are required for computing the relative proportions of embankment and excavation* on any work, which operation is much facilitated by the use of Mr. Macneil's ingenious tables, calculated upon the "Prismoidal Formula," which shows the cubic content of any prism to be equal to the area of each end + four times the middle area, multiplied by the length and divided by 6 ; whereas the common methods of taking

[^48]half the sums of the extreme heights for a mean height, or of taking half the sum of the extreme areas for a mean area, are both erroneous; the first giving too large a result, and the second too little.

Mr. Haskoll also gives very useful tables for the calculation of the areas of cross sections in the 2nd vol. of his "Engineer's Railway Guide;" a book containing full information upon all subjects connected with the laying out and construction of railway works.

The last description of levelling by the spirit-level to be noticed, is the method of tracing instrumentally horizontal sections termed "contours," either round a group of isolated features of ground for the formation of plans for drainage, sanitary, railway, or other engineering purposes-models or plans of comparison for military works, \&c.; or over a whole tract of country with the view of giving a mathematical representation of the surface of the ground in connection with a national, or other extensive and accurate survey.

As regards the first of these, the tracing instrumental contour lines round any limited feature, or group of features of ground, the manner of proceeding is very simple. The site must be first carefully examined, and those slopes that best define the configuration of the surface, particularly the ridge and watercourse lines, marked out by rods or long pickets at such distances apart as may appear suited to the degree of minutiæ required, and the variety in the undulations of the ground. Where no such marked sensible lines exist, the rods must be placed where they can most readily be observed, being necessary as guides for the levelling staff during the subsequent operations. An accurate survey of the ground on which the positions of these rods are shown is then to be made. This should be laid down upon a scale proportioned to the purposes for which the plan is required, and to the vertical interval by which the contour lines are to be separated.

The scale for towns that has been adopted on the Ordnance Survey is 88 feet to 1 inch, which is sufficiently large for most engineering and municipal works, but can be increased to 40 or 50 feet for illustrating projects for drainage, or for the supply of water by pipes, \&c. Estates are generally laid down upon a scale of 3 or 4 chains to 1 inch. For the larger scales the contour
lines may be traced at equidistant vertical intervals of from 2 to 10 feet, where the scale of the plan varies from 50 to 500 feet to 1 inch. This plan of the ground should be in the hands of the surveyor on commencing his contouring, as it will be of considerable assistance during the operation; and it is also desirable that sections should be run from the level of some fixed plane of comparison along the principal and best-defined lines marked out by the rods alluded to, leaving pickets at the vertical intervals assigned to the contours. These pickets serve as tests of the accuracy of the work as it progresses and as starting points for fresh contours. The staff is now to be held at one of the pickets; the spirit-level (or theodolite used as a spirit-level) being so placed as to command the best general view of the line of level, and adjusted so that its axis may, when horizontal, cut the staff; and the vane (for a levelling staff of this description is required) raised or lowered till it is intersected by the cross wires of the instrument. The staff with the vane kept to this height is then shifted to a point about the same level between the next row of ranging rods not more than 12 or 15 chains distant from the spirit level, on account of the correction that would otherwise be required for the curvature of the earth (about $\frac{1}{8}$ of an inch in 10 chains), and moved up and down the slope till the vane again coincides with the wires, when another picket is driven. This process is continued until it is found necessary to move the level to carry on the contour line to the extent required.

The same operation of course takes place with the contours above and below that first laid out; and where any bench-marks or points, the level of which can be of importance, come within the scope of the spirit-level, they should be invariably determined.

Where the vertical interval is small, the pickets upon more than one line of contours can often be traced without shifting the position of the instrument, if the levelling staff is of sufficient length. Too much should not however, be attempted at one time.

With regard to the second division of this subject, the tracing instrumental contours in connection with a national survey, the best instructions that can be given is a brief outline of the mode at present followed on the Ordnance Survey.

The ground between each of the trigonometrical stations is care-
fully levelled with a spirit-level, pickets being left at convenient intervals for the contours to start from. The surveyor to be employed in tracing these contours is furnished with the altitudes of the pickets, or those of bench-marks out of the direct line between the trigonometrical points if they have been so left in preference, from which he has to level up or down to the contour height from whence he is to commence. With a theodolite or spirit-level he then traces the contour lines round the hill features in the manner already described, levelling to certain other bench-marks, whose positions have been given to him, but of whose altitude's he is not informed, in order that a check may be established upon his work; the position of the contour lines being recorded in a field-book, with reference to the measured detail of the houses, fences, \&c., in a close country; or by transverse lines in open uncultivated ground.

The whole of the altitudes for the foundation of the contour lines are determined by levelling with the spirit-level; the calculated heights obtained by angles of elevation and depression during the progress of the survey, not being considered sufficiently accurate for the work as it is now performed:-the vertical distances between the contour lines thus traced out on the Ordnance Survey (now published on the scale of 6 inches to 1 mile , or 880 feet to 1 inch), varies-according as the character of the ground is steep or flat-from about 50 to 250 feet. These contours are, however, all interpolated with intermediate horizontal lines, run with the water level at the constant fixed vertical intervals of 25 feet.

By assuming the level of the sea as the datum plane from which these progressive series of contours are to reckon, the altitudes of the several horizontal sections above that point are at once represented, which is a more useful and practical arrangement than the system adopted by the French (who first introduced this method of delineating ground), of fixing upon some imaginary plane of comparison above the highest parts of the plan, similar to the mode still practised with ordinary sections.

On surveys, where pretensions are not made to such extreme mathematical precision, horizontal sections at distant vertical intervals, may be traced with the theodolite or spirit-level, and the

Fig. 1.
Plate. 8.

Fug.
Fig. 3.

Fig. 4.

$a . b=$ vertical interval oorresponding to $c . d$.
$A m=f . b$.

LONDON TOHN WEALE. 1850 .

Digitized by GOOgle

intermediate contours filled in by the eye; to perform which with tolerable accuracy, with the assistance of the instrumental contours previously marked by pickets on the ground, becomes, after a little practice, an operation of no great difficulty.

Even in surveys where the delineation of the surface of the ground is to be represented entirely by sketching on the horizontal system, as described in page 60, a few distant instrumental contours very much facilitate the work, and give it a character of truth and certainty that could not otherwise be looked for.

Fig. 1, Plate 8, illustrates the method of tracing and surveying the contour lines when the operation is carried on between the separate secondary triangles on an extensive survey. As has been remarked however, thereois no necessity for following this system of working rigidly within the boundary lines of these triangles, as bench-marks established at any convenient spots out of the direct line connecting two trigonometrical stations, answer just as well for checks upon the progress of the work, and for datum points from whence to commence, and upon which to close the work.

Supposing, for instance, the altitudes of the trigonometrical points B, C, D, had been previously ascertained to be respectively 625 , 570 , and 282 feet above the level of the sea, and that the instrumental contours were required to be marked at equal vertical intervals of 50 feet above that level. Starting from either of these points, say \mathbf{C}, in the direction of $\mathbf{C B}$, mark the level of the nearest line of contours, which in this case would be 20 feet below C; and then the points where every difference of altitude of 50 feet would cut the line CB (500,450 , \&c.). On arriving at B a check is at once obtained upon the section that has just been run; and the error, if any, can be corrected upon the spot. The other sides of the triangle, B D and DC, are then levelled in the same manner; the connection of the corresponding contour lines cutting each of them traced out by the spirit-level; and their position in plan laid down, either by traversing, or by reference to points and lines already surveyed and plotted. The places of many of these contour pickets can generally be ascertained whilst the levelling is in progress, by measuring their distances from the instrument, and observing the angles made by them and the trigonometrical or other
known points. For this and other methods of obtaining their positions in the readiest manner, no fixed directions can be given, as they must vary in different localities; and nothing but practice will render a surveyor capable of availing himself of the many opportunities he will constantly meet with of simplifying his operations by the exercise of a little forethought and judgment.

If, instead of confining the process of contouring within triangles, the altitudes of any points, $a, b, c, d, \& c$., had been determined by levelling, and given to the surveyor as his starting points; he has only to level from one of them to the required altitude of the nearest contour line, either above or below him, and then proceed to carry this level round the hill features as in contouring isolated surveys. In very hilly or broken ground this system would appear preferable to that of working within the limits of regular figures, as the whole operation is made to depend more upon the marked natural features of the country.
It is hardly necessary to enumerate the advantages of a system of horizontal contours, traced thus accurately upon the plans of a national survey. Not only can the best general lines of directions for roads, canals and railways; conduits for the supply of water; drainage pipes, \&c., be ascertained without the trouble and expense of trial sections; but accurate sections, for whatever purpose required, may be traced to any extent across the country in all directions. Had this system been adopted on the Ordnance Survey of England, twenty years ago, an incalculable saving would have been effected on all the trial lines run to ascertain the best practicable directions for the railways that now intersect this country.
Another use to which contour lines traced round any limited extent of ground can be applied, is the formation of models for military or other purposes; though the contour plan itself affords far more accurate data for reference than can be obtained from the model, the dimensions of which being derived from the plan, are, like all copies, more liable to be vitiated by errors than the originals.

To construct these models an outline of the plan is pasted upon a flat board of seasoned wood or other material, the points at which all the vertical heights have been determined being marked upon the orthographic projection. Vertical standards of copper, zinc, or any other metal, are then inserted into the board at these points,
and cut off at the proper heights. The level of the board forms the lowest horizontal plane-that of the sea at low water, if the ground to be represented is contiguous to the coast;-and the tops of the highest set of rods the superior plane of contours. The intervals between these pieces of wire are filled in with composition or modelling clay, which is worked carefully to the level of the tops of the rods, and with a small flattening tool or the hand, moulded so as to represent as nearly as possible the irregularities of the surface of the ground; which representation will be more or less perfect in proportion to the smallness of the vertical intervals between the successive series of contours.

In some cases, particularly when the scale of the model is small, and the character of the country of slight elevation, it is found desirable to increase the vertical scale, making it some multiple of the horizontal; but this of course produces an unreal and more or less exaggerated representation of the ground.

Where the contours have been run at cousiderable vertical intervals, and the surface sketched by the eye between them, the sketch will be found of much assistance in shaping the surface of the model.

From this model, if a mould in plaster of Paris is made, any required number of casts can be taken, which if properly prepared with isinglass or size, may be coloured, and have delineated on their surfaces, references, boundary lines, \&c., for geological purposes. These models are eminently useful, but they should be made of small detached pieces, representing the different divisions and characters of the strata.

By the aid of a contoured plan, many problems can likewise be worked out without the aid of vertical sections; from among others the five following are selected as of practical utility*:-

1. To find the direction of the slope and the inclination of a plane passing through three given points A B C, not in the same straight line.-Fig. 2, Plate 8.
Divide the line AC, joining the highest and lowest of the given points, so that the two parts may bear the same proportion to each

[^49]other as the numbers expressing the difference of level between the third point and each of the other two ; that is, make AD:DC: $A \sim B: B \sim C ; D$ will then be on the same level as B; and D B will be a horizontal of the plane required.

2. To find the scale of a plane which shall pass through two given points and have a given inclination.

This inclination determines the interval in plan between the contours passing through the two given points. With one of these points as a centre, and that interval as radius, describe a circle, the tangent drawn to which from the other point is a horizontal of the plane required. If the distance between the points is less than the necessary interval between the contours, this problem is of course impossible; and when possible it admits of two solutions.
3. To find what part of a given surface is elevated above a given plane.
The intersection of the horizontals of the plane with the contour lines at corresponding levels of the surface above, denotes, as seen in Fig. 3, the portion of the surface rising above the plane.

4. To find the intersection of two planes.

Produce until they meet two or more contours, having corresponding levels of each; the line joining the points of meeting will be that of intersection. If the contours of the two planes be parallel, their intersections, being a horizontal of each plane, will be known if one point in it be found.
5. To find in a plane, given by its scale of slope, a straight line, which, passing through a given point in the plane, shall have a given inclination less than that of the plane (Fig. 4).
Trace a contour of the plane having any convenient difference of level above or below this point. With that point as a centre, and with the base due, with the required inclination of the line to the assumed difference of level as a radius, describe an arc cutting that contour. The line drawn through their intersections and the given point will have the required inclination.

By the above problem a road up the side of a hill represented
by contours, can be traced so as not to exceed in any part a given inclination.

The application of contours to the object of defilading a work to secure its interior from fire (almost the first use to which they were applied) can hardly be entered upon here. The subject is fully treated by many French authors on fortification; and extracts from Captain Noizet's paper, in the "Mémorial du Génie," will be found in the sixth volume of the Royal Engineers' Professional Papers*.

The method of measuring altitudes by the barometer and the temperature of boiling water is reserved for the next chapter.

* See also the chapter upon Defilade in Captain Macaulay's "Field Fortification."

CHAPTER VII.

LRVELLINGCONTINUED.

MOUNTAIN BAROMETER, \&C.
The Mountain Barometer presents a method of determining comparative altitudes not susceptible of so much accuracy as those already described, but far more expeditious when applied to isolated stations separated from each other by considerable distances. It is also capable of being used extensively by one individual; and the observations, if performed with care, will in most cases give results very near the truth. The instrument, as made at present, is very portable, though liable to injury in travelling if the proper precautions are not invariably taken, the most essential of which is that of always carrying the cistern inverted, and in this position tightening the screw* at the bottom of the cistern to prevent the oscillations of the mercury breaking the tube. In barometers considered of the best construction, and which are the most expensive, the surface of the mercury in the cistern is brought by a screw to the zero of the instrument, which marks the height at which it stood there when the scale was first graduated \dagger. In others, not furnished with the means of effecting this adjustment, and in which the cistern is entirely enclosed from view, an allowance must be made to reduce the reading on the scale to what it would have been if the mercury in the cistern had been adjusted to zero. It is

[^50]evident that this correction of the height of the column of mercury must be proportioned to the relative capacities of the cistern and the bore of the tube.

Thus, supposing the interior diameter of the tube to be $\cdot 1$, its exterior $\cdot 3$, and the diameter of the cistern $\cdot 9$ inches; the ratio of the areas of the surfaces will be $(81-9)$ or 72 to $1 *$. The difference, then, between the observed reading of the barometer, and that of the "neutral point," which is the height at which the mercury stood in the tube above the zero mark of the cistern when the instrument was first made (and is always marked NP), is to be diminished in this proportion, and the quotient applied to the observed reading, additive when it is above this standard, and subtractive when below. The small correction for the capillary attraction of the glass tube is constant and additive, and is generally allowed for by the maker in laying off the neutral point, in which case no further notice need be taken of it. Should air by any means have found its way into the tube, it can, if this is of large bore, be nearly got rid of by holding the barometer upright, with the cistern downwards, and turning the screw at the bottom as far as it will go without forcing. The instrument must then be sloped to an angle of about 45°, when more air will rush into the tube. If the screw is now unloosed, and the instrument held with the cistern upwards, at an angle of 45°, and gently tapped, the air will nearly all escape; the test of which is the mercury striking the top with a clear, and not a muffled sound, showing that the vacuum is nearly perfect.

The principle upon which the density of the atmosphere, measured by the height of the column of mercury, is applied to the determination of comparative altitudes is too generally known to need explanation; but the mere comparison of the observed heights of mercury at the places of observation will not suffice for the purpose, as every change of one degree of temperature of Fahrenheit's thermometer causes an expansion or contraction of the fluid of

[^51]gobo of its bulk; and all observation must be corrected on this account if made under different degrees of temperature. The method of using the mountain barometer is shortly as follows: it is carried, as before observed, inverted, until required for use, the cistern being always above the horizontal at an angle of at least 45°; when the screw at the bottom of the cistern being first turned until it no longer acts against the end of the tube, the instrument is reversed, and the gauge-point (if there is one) is set to zero. The index is then moved till its lower edge is a tangent to the globular surface of the mercury, the height of which in the tube is read off to $\frac{10}{100}$ of an inch by means of the index vernier; the thermometer attached to the instrument, showing the temperature of the fluid, and the detached thermometer, that of the atmosphere at the time of observation, are also noted, together with the heights of the mercury. The following form is convenient, as containing the observations, and leaving a space for the results :-
\[

\left.$$
\begin{array}{c}
\text { N.P. }=30 \cdot 100 \\
\text { Cap. } \frac{1}{68 \cdot 37}
\end{array}
$$\right\} Lat. 51^{\circ} 24^{\prime}
\]

Station.	Attd. Ther.	Detd. Ther.	Obeerved Barometer.	Correction for Capacity.	Corrected Barometer.	Difference of Levol.	Remarks.
High-water mark	61°	58°	30.405	-004	30.409		
Parade, Brompton Bar rack.	60°	57°	30.276	-002	$\begin{gathered} \text { B } \\ 30 \cdot 278 \end{gathered}$	$116 \cdot 6$	
Star Mill	$67^{\circ} \cdot 5$	54°	30-120	-	$\begin{gathered} \text { B } \\ \mathbf{3 0 \cdot 1 2 0} \end{gathered}$		

It is of course preferable to have two barometers, and to make simultaneous observations, as during changeable weather dependence cannot be placed upon results obtained with only one; particularly if any considerable interval of time has elapsed between the comparison of the heights of mercury at the different stations. Even the method that has been suggested by Mr. Howlett of noting the time of each observation, ending the day's work at the spot where it was commenced, and then correcting the readings of the barometer and thermometer at each station for the proportion of
the total change between the first and last reading due to the respective intervals of time, cannot of course render observations taken with one barometer equal in accuracy to those observed simultaneously with two instruments, unless the rise or fall of the jarometer, and particularly of the thermometer, was ascertained to have been uniformly progressive during the whole day. Observing, however, the barometer again at the first station at the close of the day has this advantage, that any great change during the period will be immediately detected, and the degree of dependence to be placed upon the observation made evident. The difference of readings, owing to these changes, will also be generally subdivided among a number of observations, though instances may occur, where this caution, as regards the thermometer, will be productive of error in the result. There are several methods of calculating altitudes from data thus obtained. That according to a formula given by Mr. Bailey, in page 183 of his invaluable "Astronomical Tables and Formule," is perhaps the most simple : it is deduced from the rule given by La Place, reducing the French measures to English feet, and expressing the temperature by Fahrenheit's thermometer, and becomes by the use of the Table* in the next page $\mathbf{A}+\mathbf{C}+\log \mathbf{D} . \mathbf{D}$ being $=\log \beta-\left(\log \beta^{\prime}+\mathbf{B}\right)$ where
t represents the temperature of the air at the lower station.
t^{\prime} that at the upper.
r the temperature of the mercury at the lower station.
r that at the upper.
A the correction for temperature dependent upon $\boldsymbol{t}+\boldsymbol{t}$.
B that for the temperature of the mercury dependent upon $r-r^{\prime}$, and

C the correction for the latitude of the place.

[^52]
TABLE

POR DETERMINING ALTITUDES WITH THE MOUNTAIN BAROMETER.

	hermomete	n open	air.		ermometers Baromete	to the有.	C	
A				B				
$t+t$		$t+t$		$r-r^{\prime}$	Higheat at Lowest Station.	Lowest at Lowent Station.	Latitade.	
40	4.76891	110	$\begin{aligned} & 4 \cdot 80229 \\ & 4.80321 \end{aligned}$					
42	4.76989 4.77089	112						
44	$4 \cdot 77089$ $4 \cdot 77187$	114 116	4.80412 4.80504	0	0.00000	$0 \cdot 00000$	0	0.00117
46	$4 \cdot 77187$	116	4.80504	1	0.00004	9.99995	5	0.00115
48	$4 \cdot 77286$	118	4.80595	2	0.00009	-99993	10	0.00111
50	$4 \cdot 77383$	120	4.80687	8	0.00013	-99987	15	0.00100
52	4.77482	122	$4 \cdot 80777$	4	0.00017	-99982	20	0.00090
54	4.77579	124	4.80869	5	0.00022	-99978	25	0.00075
56	4.77677	126	$4 \cdot 80958$	6	0.00026	-99974	30	0.00058
58	4.77774	128	$4 \cdot 81048$	7	0.00030	-99970	85	0.00040
60	4.77871	130	4.81188	8	0.00035	-99965	40	0.00020
62	4.77968	182	4.81228	9	0.00039	-99961	45	0.00000
64	4.78065	134	$4 \cdot 81817$	10	$0 \cdot 00043$	-99956	50	9.99980
66	4.78161	136	4.81407	11	0.00048	-99952	55	9.99960
68	$4 \cdot 78257$	138	4.81496	12	0.00052	-99948	60	9.99942
70	4.78353	140	4.81585	18	$0 \cdot 00056$	-99943	65	9.99925
72	4.78449	142	$4 \cdot 81675$	14	$0 \cdot 00061$	-99940	70	$9 \cdot 99910$
74	4.78544	144	$4 \cdot 81763$	15	0.00065	-99935	75	$9 \cdot 99900$
76	4.78640	146	4.81851	16	$0 \cdot 00069$	-99930	80	$9 \cdot 99890$
78	4.78735	148	4.81940	17	0.00074	-99926	85	9.99885
80	4.78830	150	4.82027	18	0.00078	-99922	90	9.99883
82	4.78925	152	$4 \cdot 82116$	19	0.00083	-99917		
84	4.79019	154	4.82204	20	0.00087	-99913		
86	4.79113	156	4.82291	21	0.00091	-99910		
88	$4 \cdot 79207$	158	$4 \cdot 82379$	22	0.00096	-99904		
90	4.79301	160	$4 \cdot 82466$	23	0.00100	-99900		
92	4.79395	162	4.82553	24	0.00104	-99895		
94	4.79488	164	4.82640	25	0.00109	. 99891		
96	4.79582	166	4.82727	26	0.00113	-99887		A
98	4.79675 4.79768	168	4.82813	27	0.00117	-99882		80
100	$4 \cdot 79768$	170	$4 \cdot 82900$	28	0.00122	-99878		
102	4.79860	172	4.82986	29	$0 \cdot 00126$	-99874		${ }_{0}^{+}$
104	$4 \cdot 79953$	174	4.83072	30	0.00130	-99869		
106	4.80045	176	4.83158	31	0.00134	-99865		-
108	4.80187	178	4.88234					

The following example taken from page 102 will explain the method of computation :-

$$
\begin{gathered}
t=58^{\circ}-t^{\prime}=57^{\circ}-r=61^{\circ}-r^{\prime}=60^{\circ} \\
\beta=30 \cdot 409-\beta^{\prime}=30 \cdot 278 ; \text { latitude } 51^{\circ} 24^{\prime} .
\end{gathered}
$$

$\log \mathrm{D}-7 \cdot 26245$

By a section taken with a spirit level, this altitude was found to be exactly 115 feet*.

Altitudes are also very easily (but not always so correctly) obtained by the tables in a pamphlet, entitled "A Companion to the Mountain Barometer," published by Mr. Jones, and sold with the instruments made by him. The barometrical observations are first brought to the same temperature, by applying to the coldest a correction found in the first table for the difference + of the attached thermometers. The approximate height is then obtained by inspection, taking the difference between the numbers corre-

[^53]sponding to the corrected readings of the barometer, from the second table.

Lastly, the correction in the third table, opposite to this result, multiplied by the mean of the detached thermometers, and added to the approximate height, gives the true difference of altitude. Below, the same example as before is worked out by means of these tables; the temperatures being converted from Fahrenheit to the centigrade scale to correspond with the tables.

Fahr.	Cent	Fabr.	Cent
$60=$	$15 \cdot 6$	$58=$	$14 \cdot 4$
$61=$	$16 \cdot 1$	$57=$	13.9
	$\cdot 5$		$28 \cdot 3$

Table first . . . $0060 \quad-\quad-$

Correction applied $\quad 0030$ to coldest barom. $30 \cdot 276$
30.281-
$14 \cdot 15$

- 45 From Table 3, - forapproximate 7075 altitude 110 ft . 5660 6.3675

In Table 2nd opposite $30 \cdot 281$ is 611
opposite $30 \cdot 409 \quad 501$
Approximate diff. of alt. . . 110
Add correction table . . 6.3
True difference of altitude . $116 \cdot 3$

Dr. Hutton's rule for the calculation of altitudes by the barometer is as follows:-First, correct the heights of the mercury, or reduce them to the same temperature, increasing the colder, or diminishing the warmer, by ${ }_{\text {gठ }}{ }^{2} \sigma \sigma$ part, for every degree of difference between them, as shown by the attached thermometer.

2nd. Take the difference of the common logarithms of the heights of the barometer thus corrected, setting off four figures
from the left hand for integers, which will be an approximate height in fathoms.

3rd. Correct the number last found for the atmospheric temperature, shown by the detached thermometers, as follows:-For every degree that the mean of the two differs from 31°, take so many $\frac{1}{635}$ parts of the fathoms above found, and add them if the temperature be above 31°, but subtract them if below, for the true difference of altitude, in fathoms*. The same example as before is thus solved by this rule :-

$\frac{30,278}{9600}=\quad .003$		$\begin{aligned} & 57 \\ & 58 \end{aligned}$	
$30 \cdot 278$ add			
30.281 logs.			57.5 mean.
$30.409==1.4830021$			31- subtract.
$30 \cdot 281$. . 1.4811702			
			26.5
Approximate alt. fathoms	18.319		
	$1 \cdot 116$	$\frac{18.3 \times 26.5}{435}$	$=1 \cdot 116$
True altitude in fathoms	$19 \cdot 435$		
	6		

$$
\text { Or in feet } \quad 116,61
$$

Where no table of logarithms is at hand, the following rule is given in Mr. Howlett's paper for the altitude :-

$$
a=\text { diff. bar. } \times \frac{48820+58.4 \times \text { sum detached thermometers }}{\text { sum of barometers. }}
$$

Approximate altitude $=a-a$ ($00006 \times$ lat. in degrees).
This is nearly correct up to 2500 ft .; for a greater altitude apply the following correction:-

True alt. $=$ approx. alt. $+\frac{1}{8}$ approx. alt. $\times\left(\frac{\text { diff. bar. }}{\text { sum. bar. }}\right)^{2}$

[^54]A new description of barometer, termed an Arenoid, has lately been invented, which, if more accuracy and minuteness can be introduced into the mode of reading off the graduation of the dial by the indication of the hand, will be found a most valuable substitute for the mercurial barometer in the determination of moderate* altitudes; being much more portable, and not subject to the same derangement and risk of fracture by carriage as the other more delicate instrument. The pressure of the atmosphere is also the motive power in this invention; but its application is totally different from that of the barometer, as it is made to act not on the surface of a fluid, but upon the sides of a shallow cylindrical metal box, from which the air has been exhausted and a small quantity of gas introduced into what otherwise would have been a vacuum, for the purpose of compensating (by its expansion with the increase of temperature) for the tendency to collapse consequent upon the loss of elasticity thereby caused in the metal. The top and bottom of the box are forcibly separated and kept in this state of tension by a plate acting as a lever, the end farthest from the central point, by which the box is supported, resting upon a spiral spring. The increase or diminution of the atmospheric pressure upon the surface of the box depresses or elevates this end of the lever, with which two other levers are connected; the last acting by means of a piece of watch spring on the roller upon the axis of which is fixed the hand that indicates upon the dial the degree of pressure; a flat spiral spring also acts slightly upon this roller, always against the levers; and thus keeps the hand, which would otherwise remain stationary after being propelled to its full distance, in constant unison with the varying fluctuations of the atmosphere.

In measuring altitudes by the arenoid the same rules for calculating the heights hold good as with the barometer; but in the present imperfect state of the instrument the precaution appears necessary to be attended to of ascertaining by trial the actual value in feet of the graduations on the dial; and also the effect produced upon these results by any change of temperature; as different instruments will be found to vary in these particulars.

[^55]The sketch below of the interior of the aneroid, the dial plate being supposed to have been removed, is taken from an extract from Mr. Dent's treatise on the instrument in the "Aide Memoire."

D D is the cylindrical vacuum box; CC the lever, to the end of which is attached the vertical rod i, connecting it with the other levers acting by means of a piece of watch spring upon the roller carrying the index hand. An alteration in the distance of leverage to regulate the movement of this hand, so as to correspond with the scale of a mercurial barometer, is managed by means of the screws e and b.

The position of the hand is made to coincide with the indication of a barometer by means of the screw A (to be touched for no other purpose), which effects the object by raising or depressing the lever C .

At present there is no probability of much improvement in this instrument, as it can only be made by the patentee; but on the expiration of the period for which this patent is granted, it is to be hoped that it will be taken in hand by our best mathematical instrument makers, and rendered capable of supplying the place of the mercurial mountain barometer; at all events under circumstances where the latter would be liable to injury or even destruction.

A substitute for the mountain barometer was proposed by Sir John Robinson, Secretary to the Royal Society of Edinburgh, at one of the meetings of the British Association at Newcastle*. The instrument consisted of a glass tube, about one and a quarter inch in diameter, and fourteen inches long, with a small bulb at the end, the capacity of which was three or four times that of the inside of the tube; and the graduations on the stem of the tabe were formed experimentally by the maker, in the following manner: 一

[^56]The instrument was suspended within the receiver of an airpump, over a cup containing water at the temperature of 62°, the mercurial barometer standing at 30 inches. The air in the receiver being exhausted to a degree of rarefaction corresponding to treenty-nine inches of the barometer, the lower end of the instrument was immersed in the cup of water; and air being admitted into the receiver, the exhaustion was repeated until the barometer gauge indicated a pressure equal to twenty-eight inches, when a corresponding mark was made on the tube, the air being in like manner admitted after its re-immersion. By the repetition of this process, the graduation of the stem was carried on as far as was necessary.

With several tubes thus graduated, an observer in a hilly country may ascertain the density of the atmosphere on the summits of different elevations, by sending an assistant to each, with one of these tubes, and a tin case containing water. They are taken up with the stems open; and the air within each partaking of the density of that at the station, the mouth of the tube is put into the water, and lefi in it as the assistant descends. The water will rise in the stem as the density of the atmosphere increases, and will indicate by its height the degree of rarefaction of the air at the upper station-a correction being made for the variation of the barometer from the standard height, and also for that of the temperature of the atmosphere.

This substitute for the expensive and delicate mercurial mountain barometer would, from its portability and simplicity, be particularly useful in determining comparative altitudes in a mountainous country, but of course the same accuracy cannot be expected from it.Another method of obtaining approximate differences of altitude is by a comparison of the temperatures of boiling water (which vary with the pressure of the atmosphere), upon which a paper was some years since published by Colonel Sykes, who practised it extensively in India*.

As the necessary apparatus is exceedingly simple, and the in-

[^57]strument not so liable to injury as the mercurial barometer, and much more portable and easily replaced, I have taken from this paper, which will be found in the 8th number of the "Geographical Journal," the tables computed by Mr. Prinsep, to facilitate the computation of altitudes, and also the examples given by Colonel Sykes, which render their application evident without further explanation.

The results deduced from the use of these tables appear always rather less than those obtained from careful barometrical observations, and also less than those calculated from the different formulæ, which have been arranged for the determination of altitudes by this method, but which do not all agree. The results of a number of careful observations made with the thermometer, compared with those obtained at the same time with the barometer; or which have been ascertained by levelling, or trigonometrically, will afford the means of making any necessary corrections in the tables; which, however, giving so close an approximation, deserve to be more generally known and made use of.

The accompanying sketch and explanation, taken from Col. Sykes's pamphlet, show the whole apparatus required :
A. A common tin pot, 9 inches high by 2 in diameter.
B. A sliding tube of tin, moving up and down in the pot: the head of the tube is closed, but has a slit in it, C, to admit of the thermometer passing through a collar of cork, which shuts up the slit where the thermometer is placed.
D. Thermometer, with as much of the scale left out as may be desirable.
E. Holes for the escape of steam.

The pot is filled four or five inches with pure water; the thermometer fitted into the aperture
 in the lid of the sliding tube, by means of a collar of cork; and the tin sliding tube pushed up or down to admit of the bulb of the thermometer being about two inches from the bottom of the pot.

Before using a thermometer for this purpose, it is necessary to
ascertain if the boiling point is correctly marked for the level of the sea by a number of careful observations, and the difference, if any, must be noted as an index error. It is always desirable to have two or more thermometers which have been thus tested; and in all observatioss the temperature of the air at the time should be noted.

TABLE I
 TEMPERATUER OF BOHLEAG WATER BETWIESA 214° AMD 180°.

Boiling Point of Water.	Barometer Modified from Tredgold's Formula.	Logarithmic Difforences or Fathoms.	Total Altitude from 30.00 in . or the Level of the Bea.	Value of each Degree in Feot of Altitude.	Propertional Part for onetenth of a Degree.
\bigcirc			Feet.	Feet.	Peet.
214	81-19	00-84.3	-1013	-605	
218	30.59	$84 \cdot 5$	507	-507	...
212	$30 \cdot 00$	84.9	0	+509	\ldots
211	$29 \cdot 42$	$85 \cdot 2$	+509	511	51
210	28.85	85.5	1021	518	...
209	28.29	85.8	1534	515	...
208	27.78	86.2	2049	517	-0
207	$27 \cdot 18$	86.6	2566	519	52
206	26.64	$87 \cdot 1$	3085	522	...
205	$26 \cdot 11$	$87 \cdot 5$	3607	524	...
204	25.59	87.8	4181	526	...
203	25.08	$88 \cdot 1$	4657	528	\ldots
202	24.58	88.5	5185	531	53
201	24.08	88.9	5716	533	...
200	23.59	$89 \cdot 8$	6250	536	...
199	$28 \cdot 11$	$89 \cdot 7$	6786	538	\ldots
198	$22 \cdot 64$	$90 \cdot 1$	7324	541	54
197	$22 \cdot 17$	90.5	7864	548	...
196	21.71	91.0	8407	546	...
195	21.26	91.4	8953	548	\ldots
194	20.82	91.8	9502	551	35
198	20.39	$92 \cdot 2$	10053	553	...
192	19.96	$92 \cdot 6$	10608	556	...
191	$19 \cdot 54$	93.0	11161	558	-0
190	$19 \cdot 13$	93.4	11719	560	56
189	18.72	$93 \cdot 8$	12280	563	...
188	18.32	94.2 94.8	12843	565	\cdots
187	17.98	94.8	13408	569	67
186	17.54	$95 \cdot 3$	13977	572	\ldots
185	$17 \cdot 16$	$95 \cdot 9$	14548	675	58
184	16.79	96.4	15124	578	...
183	16.42	96.9	15702	581	...
182	16.06	97.4	16284	584	...
181	$15 \cdot 70$	$97 \cdot 9$	16868	587	
180	15.35		17455		50

The Fourth Column gives the Heights in Feot.

TABLE II.
TABLE OF MOLMPLIERS TO OORREOT THE APPROXTMATM HEIGET FOR THE TEMPERATURE OF THE AIR

Temperature of the Air.	Multiplier.	Temperature of the $\Delta i r$.	Multiplier.	Temperature of the Air.	Multiplier.
-		-		-	
32	1.000	52	1.042	72	1.083
33	1.002	53	1.044	73	1.085
34	1.004	54	1.046	74	1.087
35	1.006	55	1.048	75	1.089
36	1.008	56	1.050	76	$1 \cdot 091$
37	1.010	57	1.052	77	1.094
38	1.012	58	1.054	78	1.096
39	1.015	59	1.056	79	1.098
40	1.017	60	1.058	80	$1 \cdot 100$
41	1.019	61	1.060	81	$1 \cdot 102$
42	1.021	62	1.062	82	$1 \cdot 104$
43	1.023	63	1.064	83	1.106
44	1.025	64	1.066	84	$1 \cdot 108$
45	1.027	65	1.069	85	1.110
46	1.029	66	1.071	86	$1 \cdot 112$
47	1.031	67	1.073	87	$1 \cdot 114$
48	1.033	68	1.075	88	1.116
49	1.035	69	1.077	89	1.118
50	1.037	70	1.079	90	$1 \cdot 121$
51	1.039	71	1.081	91	1.123

When the water (with the thermometer immersed) has been boiled at the foot and at the summit of a mountain, nothing more is necessary than to deduct the number in the column of feet opposite the boiling point below, from that opposite the boiling point above: this gives an approximate height, to be multiplied by the number opposite the mean temperature of the air in Table II., for the correct altitude.

Boiling point at summit of Hill Fort of Párundhur, near Púna $204 \cdot 2=4027$
Boiling point at Hay Cottage, Púna . . $208 \cdot 7=1690$
Approximate height 2337
Temperature of the air above . . 75°
Ditto ditto below. . 83

Mean 79 - Multiplier 1•098
Correct altitude 2566 feet.

When the boiling point at the upper station alone is observed, and for the lower the level of the sea, or the register of a distinct barometer is taken; then the barometric reading had better be converted into feet, by the usual method of subtracting its logarithm from $1 \cdot 47712$ (log. of 30 inches) and multiplying by 6 , as the differences in the column of "barometer" vary more rapidly than those in the "feet" column.

$$
\begin{aligned}
& \text { Peet. } \\
& \text { Example.-Boiling point at upper station . . } 185^{\circ}=14548 \\
& \text { Barometer at Calcutta (at } \mathbf{3 2 ^ { \circ }} \text {) } 29.75 \\
& \text { Then } 1 \cdot 47712-1 \cdot 47349=\cdot 00363 \\
& \text { Setting off four figures gives } 36.3 \\
& \text { fathoms, which } \times 6
\end{aligned}
$$

Approximate height . . . 14330
Temperature, upper station, 76°
Ditto lower, 84
Mean temperature . . . $\left.80 \begin{array}{c}\text { Multiplier } \\ \text { Table 2. }\end{array}\right\} \quad \mathbf{1} \cdot 100$

$$
\text { True altitude } 15763
$$

Assuming 30.00 inches as the average height of the barometer at the level of the sea (which is however too much), the altitude of the upper station is at once obtained by inspection in Table I., correcting for temperature of the stratum of air traversed, by Table II.

In moderate elevations, the difference of one degree in the temperature at which water boils, indicates a change of level of about 500 feet, nearly equivalent to what would be shown by a difference of 06 of an inch in a mercurial barometer.

CHAPTER VIII.

BEADING AND ENGRAVING TOPOGRAPHICAL PLANE.

Aftre all the mechanical portions of the survey, (including the horizontal contours if they have been traced instrumentally,) have been plotted to the required scale; the features of the ground, and any other detail that may have been sketched in the field, are transferred to the original plot for the commencement of the finished plan, supposing one to be required either to be preserved as a drawing, or for the purpose of engraving. This is generally finished with a brush, either in Indian ink or sepia; but a grea want of one general system of topographical plan-drawing is here felt, particularly as regards the method of expressing the features of the ground in a manner at once easy of execution and generally intelligible.

The different disposition of the light affords the means of varying the system of shading hills. Where it is supposed to descend in parallel vertical rays upon the ground, each slope evidently receives less light, or, relatively speaking, more shade, in proportion to its deviation from a horizontal plane, on which the maximum of light falls. Mr. Burr, in his "Practical Surveying," devotes a chapter to the scale of shade to be applied to plans finished on this supposition, which however he candidly acknowledges to be an impracticable theory; but it leads him to the very just conclusion, that hills are generally shaded much too dark to give anything like a natural representation of their various slopes, which defect has also the additional fault of confusing the appearance of the drawing, and impairing the accuracy of the outline. The slopes drawn upon this system have evidently no light or dark sides, which causes a monotonous effect; and yet, on the same plan, both trees and houses are constantly represented with shadows.

The other system of supposing the light to fall obliquely upon the ground (as in nature), either at one fixed angle or at an angle proportioned to the general character of the slopes *, is decidedly favourable to the talent of an artist; but there are two objections its general adoption in plans of an extended survey: first, the difficulty of execution; and secondly, its ambiguity, even when correctly drawn, except to those accustomed to the style. The slopes directly opposed to the light would evidently receive a greater portion of illumination than the summits of the highest hills; and, in fact, the whole arrangement of the disposition of the shades is quite different from what it would be under a vertical light, as is seen by exposing a model of any portion of ground to a strong light from a partially-closed window. The practice of copying the effects of light and shade from models is the best introduction to this system of shading ground, and is in fact indispensable before attempting to finish a plan \dagger.

The method now most generally practised in topographical plandrawing partakes of both these systems \ddagger; the light is considered as falling nearly vertical, but sufficiently oblique to allow of a decided light and shade to the slopes of the hills, trees, \&c. The hills are shaded, not as they voould really appear in nature, but on the conventional system of making the slopes darker in proportion to their steepness; the summits of the highest ranges being left white. This arrangement, though obviously incorrect

[^58]$!$
-

,
in theory, has the advantage of being generally understood even by those not accustomed to plan-drawing, and is also easy of execution: it is that now adopted in finishing the plans of the Ordnance Survey, and from which the features of the ground are engraved on the vertical system of etching, as being much the easiest, although not so for sketching in the field.

Trials have also been made to render the patent process of engraving by a machine, known by the name of "Anaglyptograph," which answers so beautifully for giving a correct representation of a cast, or basso-relievo, available for topographical designs. A surprising relief is produced by this method of engraving, but it renders the general surface of the plan so dark as to obscure the accuracy of the outline; and as it is necessary that a model should be previously made of the feature to be represented, it is only suited to small portions of irregular ground.

Attempts have likewise been lately made to introduce some system of engraving that may combine as far as it is possible the accuracy of horizontal contours with the effect of etching, which it is hoped will before long be brought into practice.

In finishing detailed plans on a large scale, stone or other permanent buildings are generally coloured red (lake or carmine). Wooden or temporary structures are tinted with a shade of Indian ink. Water is always coloured blue. Where distinctions between public and private buildings or property are required to be shown, different colours must be used and explained by references on the drawing; the same remark applies to the distinction between buildings erected and those only contemplated. The most usual conventional signs have already been alluded to in pages 68 and 69.

CHAPTER IX.

COLONIAL SURVEYING.

The preceding chapters will, it is believed, be found to contain all necessary information connected with the survey of any tract of country, whatever degree of accuracy or detail may be required; but in a newly-established colony, or one only partially settled, the primary object in view, in commencing an undertaking of this nature, is not the same as in that of a thickly peopled and cultivated country. In the latter case, the surveyor aims at obtaining, by the most approved methods consistent with the time and means at his disposal, data for the formation of a territorial map showing the position and extent of all roads, towns, provinces, counties, and, where the scale is large, parishes, and even the boundaries of property and cultivated or waste land; as well as the features of the surface of the ground, and all natural and artificial divisions, together with the collection of a variety of other useful geological and statistical information. In a new country only the natural lines and features exist;-the rest has all to be created.

The first operations then, required in a perfectly new settlement, are, the division into sections of such size as may be considered best adapted to the wants of settlers, of the land upon which they are to be located; and the marking out the plan of the first town or towns, the sizes and positions of which will of course be regulated by local circumstances and advantages; whilst the first rural sections will naturally be required either in their immediate vicinity, or contiguous to the main lines of communication leading to the different portions of the province, whose local importance is the earliest developed.

In the case of a small settlement established upon the coast of any country, for the immediate reception of settlers who require to
be put in possession, directly upon their arrival, of a certain stipulated amount of land for agricultural or other purposes, the simplest form of survey must necessarily be adopted; that described in Capt. Dawson's Report upon the Survey of New Zealand for instance, which consists simply in marking methodically upon the ground the angles of a continued series of square or rectangular figures, leaving even the roads which are intended to surround each block of sections, to be laid off at some future period,-would answer the purpose of putting impatient emigrants in possession of a homestead containing about the number of acres to which they might be entitled. But this system could not be carried out extensively with any degree of accuracy, even in a comparatively level country, and not at all in a mountainous or irregular one. In fact, it is not a survey; and though perhaps it may sometimes be necessary to adopt what Mr. F. Wakefield, in his recently-published pamphlet upon Colonial Surveying, terma this "make-shift process,"" the sooner a regular survey takes its place the better for the colony, even on the score of the ultimate saving that would be effected by getting rid of the necessity of incessant alterations and corrections; to say nothing of the amount of litigation laid up in store by persevering in a system necessarily entailing an incorrect division of property, upon which there is no check during the progress of the survey, and for which there is no remedy afterwards.

Excepting in some isolated instances such as described above, where everything is required to give way to the imperative necessity of at once locating the first settlers upon land for which payment has been received, (for, by the present system of colonization, no land is alienated from the Crown otherwise than by purchase, the greater portion of the proceeds of the sale being devoted to the purpose of further emigration, the first step to be undertaken at the commencement of the survey of a new country, is a careful and laborious exploration within the limits over which its operations are to extend; during which would be collected for subsequent use a vast amount of practical information

[^59]as to the number and physical condition of the aboriginal natives (if any); the geological character of the soil; its resources of all kinds; sources and directions of rivers; inland lakes and springs; the probable sites of secondary towns; the most apparent, practicable, and necessary main lines of communication; prominent sites for trigonometrical stations, \&c., \&c. A sketch of the country examined, rough and inaccurate doubtless, but still sufficient for future guidance, is at the same time obtained; the positions of many of the most important points for reference being determined by astronomical observation, and the altitudes of some of them by the mountain-barometer or aneroid, or by the temperature of boiling water, by methods already explained.

The next step should be, if this question has not been already determined by strongly-marked local advantages, or previous settlement, the position of the site of the first principal township, a nucleus being immediately required where fresh arrivals may be concentrated, prior to their dispersion over the country. The size* and figure of the town will of course vary according to circumstances; and the principal general requirements that should suggest themselves to any one charged with a decision of this nature are,-facilities of drainage; plentiful supply of good water; easy access both to the interior of the country, and, if not situated on the coast, to the adjacent port; the apparent salubrity of the site; facility of procuring timber and other building materials, such as sand, lime, brick-earth, stone, \&c.; security from predatory attacks, and vicinity to sufficient tracts of land suited to agricultural and pastoral purposes.

The site of the town, with its figure and extent, being decided upon after a careful investigation of the above and a variety of other minor considerations, the best main lines of road diverging from it in all the palpably-required directions should be marked out, and upon these main lines should abut the sections to be first laid out for selection. Errors of judgment will doubtless be subsequently found to have been made in the directions of some of

[^60]these roads; but this is certainly productive of less injury to the colony than the plan of systematically marking out the land without providing for any main lines of communication at all, leaving them to be afterwards forced through private property under the authority of separate acts of the colonial legislature; a system entailing discontent, litigation, delay, and expense. The marked natural features of the ground, such as the lines of the coast, or the banks of lakes or rivers of sufficient importance to constitute the division of property, and the main lines of roads alluded to, will, where practicable, guide the disposition of the lines forming the boundaries of the sections to be now marked out. Where no such natural or artificial frontages exist, the best directions in which these rectangular figures can be laid out are perhaps those of the cardinal lines, excepting in cases where the nature, inclination, and general form of the ground evidently point out the advantage of a deviation from this rule.

The size of these sections is a question to be determined by that of the minimum average number of acres which it is supposed is best adapted to the means and wants of the settler; the latter being in a great measure regulated by the apparent capabilities of the soil. Land divided into very large farms is placed beyond the reach of settlers of moderate capital; and if subdivided into very small portions, the expense of the survey is enormously increased, and labourers are tempted to become at once proprietors of land, very much to their own real disadvantage, as well as that of the colony. In South Australia, 80 acres has been adopted as the average content. In parts of New Zealand* and elsewhere, 100 acres. In Canada + , generally more than double that quantity. Whatever size may be determined upon, it is advisable to adhere to as nearly as possible, in all-general cases; though, where special application is made for rather larger blocks,

[^61]there has been found no mischief in departing from the average size, provided this deviation is not so extreme as to prevent fair competition for any peculiarly valuable locality. In such cases, it is however, always necessary to guard particularly against the monopoly of surface water within the area of the section, or of any extended valuable frontage; as well as against any impediment that might be placed in the way of forming roads through the property. Where the main lines of communication have not been previously laid out, it is requisite, especially in large blocks of land, to reserve to the government, at all events for a limited number of years, a right of forming such roads as are evidently for the public benefit, making of course compensation for any damage that may be thereby done, though this can generally be met by a previous allowance of a certain number of acres in excess of the proper content of the block*. Indeed, if proper precautions could be taken to prevent its being abused, it would be advisable to reserve this power of making such general roads as are clearly advantageous to the community, through all sections of land of whatever size; with the right of taking stone and timber for making and repairing these roads and the bridges erected along their line; though all such interference with private rights should as much as possible be obviated by previous careful examination of the country.

The rapid settlement of a newly-formed colony being an object always to be fostered, the sections marked out for sale should be so arranged as to conduce as much as possible to this desideratum; to attain which end, the surveys should, at all events at first, be kept well in advance of the demand for land, for the purpose of giving the most ample choice of selection to intended purchasers. By the opposite system of selling land in advance of the survey, an unfortunate emigrant not unfrequently finds the greater part of his section occupied by the bed of a salt lagoon or swamp, and experiences no slight dismay in discovering that he is not even in possession of the number of acres for which he has paid, and to

[^62]which perhaps he has no access with any sort of wheeled vehicle, in consequence of the occupation roads being marked down upon the ground to correspond with straight lines previously drawn upon paper; so that they lead, without any controlling power in the surveyor to alter their course, up and down almost inaccessible ravines, or probably for several hundred yards at a stretch along the bed of a stream.

In marking out these sections, the following remarks* will direct attention to the different local peculiarities which require a deviation from established rules, and to the general system of conducting the work in the field; the mechanical practice of surveying being of course supposed to be already known.

Sections laid out with frontages upon main lines of road, rivers, or wherever increased value is thereby conferred upon the land, should have their frontage reduced to one-half, or even onethird of the depth of the section, so as to distribute this advantage among as many as can participate in it, without rendering the different sections too elongated in figure to be advantageously cultivated as a farm.

In addition to this contraction of frontage, easy access by roads must be provided from the country in the rear leading to this water or main road; without which precaution the owners of the front lots would, by blocking up the land behind them, virtually obtain possession of it, for at least pastoral purposes, without payment. These roads should occur at intervals proportioned to their requirement, generally between every third or fourth section.

Every section should have an available road on one of the four sides forming its boundaries, by which the proprietor has access to the main lines of communication; its breadth may vary from half a chain to one chain, according to circumstances; in square or rectangular sections of 80 or 100 acres each, roads surrounding each block of six or eight sections have been found amply sufficient; but in a country at all broken or irregular, some of the roads so laid out would often be found quite impracticable; in such cases, it is necessary either to trace and mark on the ground along the

[^63]ridges of the secondary features, or wherever the ground may offer fewest impediments, cross roads leading into the main lines, and to lay off the sections fronting upon them; or to make these by-roads run through the sections; which is to be avoided as much as possible, on account of their cutting up small properties, and entailing a very considerable expense in the increased quantity of fencing required.

In parts of the country where water is scarce, the greatest care should be taken to prevent its monopoly by individuals. Springs and permanent water-holes should in such localities be enclosed within a small block of land (one or two acres), and reserved for the use of neighbouring flock-owners and the public generally; and practicable roads must be arranged leading to these reserves, without which, excellent and extensive tracts of land would often be comparatively valueless.

As it would evidently very much increase the cost of laying out sections having broken and irregular frontages, if they were required each to contain exactly the same number of acres; the nearest approximation that can be made to the established size by the judgment of the surveyor should be adopted, and the section afterwards sold according to the quantity of land it is found to measure.

For the purpose of giving to settlers seeking for land upon which to locate, every facility for acquiring information respecting its capabilities, and the positions of the different surveyed portions; the freest access to the statistical reports of the surveyors, and to the plans of the different districts deposited in the Survey Office, should be given. In addition to which, the sections themselves should be marked so distinctly upon the ground by short pickets, driven at intervals regulated by the comparative open and level character of the country, as to enable any person to follow up their boundary lines without difficulty. The angular pickets should be much larger, and squared at the head, on which the number of the section, and of all the contiguous sections, should be marked. Adjacent roads should also be designated by the letter R. Independent of the corners of sections being pointed out by these pickets, they should be deeply trenched with a small
spade or pick, showing not only the angle formed by contiguous sections, but also the directions of their boundary lines.
Road. Such marks remain easily recognised for years, and are \rightarrow not injured either by bush fires or by the constant passage of herds of cattle, by both of which means many of the wooden pickets are soon destroyed.

It has been generally considered expedient, that roads should be reserved if not actually marked on the ground, (excepting in cases where they would interfere with the erection of wharves, mills, \&c.,) along the banks of all navigable rivers, the borders of lakes, and along the lines of a coast. This regulation, if stringently applied, without reference to peculiar circumstances in different localities, would often be found oppressive and mischievous. Very frequently roads laid out with judgment to the various points on the margins of these waters, which are best adapted for the purposes of fisheries, watering flocks, establishment of ferries, building or launching boats, \&c., with a sufficient space reserved for the use of the public at these spots, would prove of more general utility.

As a general rule, as many sections as possible should be laid out in the same locality, if the land is of a nature to be soon brought into cultivation. Whilst greater choice of selection is thus given, the comparative cost per acre of the survey is diminished; of course this remark applies only to situations the rapid settlement of which is anticipated.
In marking the boundaries of sections on the ground, all natural features crossed by the chain should be invariably noted in the field-book; on the outlines plotted from which are drawn the general character of the contours of the hills, the different lines proposed for roads, directions of native paths, wells, springs, and every other object tending to mark the nature and resources of the country. Copies of these plans* should always be transmitted to the principal Survey Office, accompanied by a rough diagram, showing, for future reference, the construction lines of the work, and the contents and length of the sides of all sections, also the measure of the angles, when not right angles; and by an explana-

[^64]tory report, describing the nature of the soil, description of timber, \&c., upon each section, and the facilities for making and repairing roads and bridges, and peculiar geological formations of the different districts. A collection of botanical and mineralogical specimens from all parts of the province will also contribute materially to the early development of its natural resources; and surveyors should not be deterred from giving their attention to this subject by ignorance of these sciences, as the specimens can be afterwards weeded and arranged, and afford invaluable statistical information.

At the head Survey Office a meteorological register * is of course supposed to be kept. It is also very desirable that each of the surveyors employed in any large district should be furnished with a good thermometer, rain-gauge, and a mountain-barometer, or aneroid, for the purpose of registering daily observations to be forwarded periodically to the general office for comparison with those obtained from different parts of the province, between which the difference of peculiarities of climate will be thus arrived at.

Surveyors working on a line of coast should be particular in noting all phenomena connected with the rise and fall of the tides; and obtain soundings, laid down with reference to established and easily-recognised marks on shore, of all creeks and harbours, whenever this may be in their power. The depths and velocities of all rivers should also be noted at different points in their course, as well as the periods of floods, and their observed influence upon the volume of water in the river.

In laying out sections up narrow rocky ravines, or in situations where creeks or any other natural features present obstacles to the continuance of the methodical rectangular form, adopted as the standard figure, a deviation from this form becomes of course necessary, and the contents of some of the sections thus often unavoidably differ from the established average. Care should however be taken in such cases, to make the outline of these irregular figures as simple as the ground will admit of, both on account of the additional trouble and time lost in their survey, and the increased cost of subsequent fencing by the purchaser.

Attention has already been drawn in page 123 to the necessity of

[^65]guarding against the monopoly of road or water frontage. The same sort of precaution is also required in marking out land in rich narrow valleys, or in spots valuable on account of minerals. As a general rule, from which no deviation whatever should be allowed, it may be laid down that no section should ever be permitted to enclose an undue proportion of land, unusually valuable from whatever cause, by extending its length in the direction in which that valuable portion of land runs; whether it be a rich agricultural valley, a mineral lode, a stream, or watercourse.

As regards the actual marking out of the sections upon the ground, when the figure is of a square or rectangular form, the process is a very simple one; whether the true meridian, or the direct line of some main road, or a line forming any angle with the meridian that may be found better adapted to the local peculiarities of the district, be adopted as the guiding line of direction.

A spot being fixed upon for the starting point, represented by A in the accompanying figure*, the normal line AB is carefully marked out by a good theodolite in the required direction; if intended to correspond, or to form any fixed angle with the meridian, this must be determined by one of the methods explained in the next chapter. The right angle B A C is then set off, which angle should be observed on both sides of A B (produced on purpose to D), and the
 chain measurement along these lines AB and AC, and afterwards along the parallels to AC, may, if two parties are employed together, which can generally be managed under the charge of one efficient surveyor with an intelligent assistant, be carried on simultaneously; the points of junction at the angles of the blocks forming in some measure checks upon the accuracy of the work as it proceeds. The size of these sections, and the intervals between the parallel sectional roads, will depend of course upon local regula-

[^66]tions. The operation would evidently be simplified by running all the measured lines in the middle of these roads, leaving half their breadth to be afterwards set off on each side by the proprietors of the land, but the palpable objections to this are too serious to be compensated by the trifling saving thereby effected. In fact, the real boundaries of no one section are by this plan marked on the ground by the surveyor ; and constant disputes and encroachments would be the consequence of adopting it.

It must be obvious to every practical surveyor, that it would be impossible for him to continue this mechanical system of marking a series of rectangular figures on the ground to any great extent, without being liable to constantly-increasing errors, which could not be guarded against by any degree of care in the operation, and of the amount of which he could never be aware, without establishing some check altogether independent of the chain measurement of the sections themselves; which is only to be accomplished by combining with it a triangulation of the country, more or less accurate, according to the nature of the survey. Whilst, then, this methodical division of the land is in progress, it is advisable, if anything like accuracy is required, and if the detached portions of settled country are to be laid down upon a general map, that the sites of the trigonometrical stations should be decided upon, and the stations themselves (however roughly they may be constructed) erected, in order that they may throughout be made use of as guides and checks upon, the measurements. The triangulation indeed would be found of the greatest service, if carried on rather in advance of the detail, as in the survey of old countries. Any great accumulation of error could be then easily guarded against, by the angles observed at different parts of the chain survey, subtended by three or more of the trigonometrical stations; and in very many instances these stations could be actually measured up to, which should be done wherever practicable; by which means the marking out of the sections answers the same purpose that is obtained in ordinary surveys by the measurement of check lines, and traversing along the roads, by which the interior detail is mostly filled in. Angles of depression and elevation should also be taken to these trigonometrical points (whose altitudes are all obtained by the triangulation), from various
parts of the chain survey, the heights of which positions, above the level of the sea, are thus obtained with tolerable accuracy.

As to the mode of conducting this triangulation, all necessary instructions have already been given in the third chapter. The degree of accuracy with which the base is measured, and the angles observed, will depend evidently upon various contingencies; for instance-the extent over which the triangulation is to be carried; the time and expense that can be bestowed upon it; the degree of minutia required in the maps, \&c., \&c. On the survey of South Australia the base was measured upon a nearly level plain very little elevated above the sea, with a standard chain; the operation being repeated several times, to obtain a more correct mean value : the angles were observed with a very excellent 7 -inch theodolite; and the result was found sufficiently accurate for the purpose of connecting all the detached blocks of surveyed land, and laying down the work to the scale of 2 inches to 1 mile.

In addition to the above use of the triangulation, it is found, in the survey of a wild country, peculiarly serviceable in enabling the Government to define, with the aid of marked natural features, the boundaries of the extensive tracts of land leased to, different individuals for pasturage, until, with the increase of population and civilization, more convenient and better-defined demarcations are substituted. Some of the principal natural landmarks of a country also, such as chains of mountains and rivers, traverse the wildest parts of the land, where chain surveying would never penetrate. Many of these landmarks are made the boundaries of counties, and other internal territorial divisions; and their positions in different parts of their course are often only to be determined by reference to the trigonometrical stations, which likewise serve as guides for ascertaining and laying down upon paper the directions of roads through extensive, barren, and uninhabited tracts of country.

Most of the foregoing remarks have been made under the supposition that a number of detached surveying parties are distributed over different parts of the country, all working under the directions of, and reporting to, a central Survey Establishment. As the population becomes distributed over a wider extent, and applications are constantly made for the survey of small, irregular
blocks of land, to complete and consolidate properties, some alterations will be required in the method of carrying on the measurement of land, to meet these new demands*. It could evidently be only by an increased expenditure of time and money that surveying parties could be kept constantly moving from one distant spot to another, to lay out perhaps, only a very limited number of acres at each; and the division of the country into Districts, for the purposes of the survey, becomes almost imperative. Copies of the plans of sections open for selection, and other information of a similar character, would be thus placed more within reach of distant settlers, and their wants could more readily and rapidly be met without augmented expense.

Portions of the work might also at this advanced stage of progress be filled in by contract, subject to careful and rigid examination; the triangulation, and the previous chain measurement connected with it, affording sufficient checks for this purpose; without which, surveying by contract should be most carefully avoided, especially in new communities where but little competition can be expected, and where it would be unreasonable to expect to find competent surveyors distributed over the remote parts of the colony.

The rate of progress and cost per acre of a sectional survey such as has been described, must vary considerably, according to the nature of the country, the prices of labour and provisions, and the minuteness of the divisions. If the size of the sections is small, 80 or 100 acres for instance, the number of lineal miles to be measured is of course very much greater in proportion than would be the case with blocks of a larger area, and the] progress must bear an inverse ratio to the increased expense. The facility of transport is another item that materially influences both these questions, as also the system of marking out patches of land in whatever locality they may be applied for, instead of carrying

[^67]the survey regularly forward, embracing all the available land in its progress. On an average the division of the land in South Australia into sections containing generally about 80 acres each, cost*, including the marking out the roads surrounding the different blocks, to which each section had access, as well as all other roads through the settled districts, the close picketing of the boundary lines of each section, and marking and trenching the corner posts, with all other details relative to the survey of such portions of the natural features of the ground as came within the limits of the chain survey, from $3 d$. to $4 d$. per acre; and each party, consisting of a non-commissioned officer of Sappers, with four or five labourers, according to the difficulties of the country, marked out on an average, perhaps, about $30,000 \dagger$ acres per annum; a very large proportion of their time, particularly towards the close of the work, being occupied in moving from one distant part of the colony to another to meet the varying demands for land.
The triangulation of the settled parts of the province, and in some directions far beyond this, did not amount to $\frac{1}{2} d$. per acre; including, as did also the average of the sectional survey, all expenses of transport of men, provisions, and camp equipage, with the wear and tear of the latter; and that of the necessary instruments; in fact, all expenses excepting those connected with the central establishment, where the plans were drawn and exhibited, and where the preliminary business of the land sales was conducted.

Even had this cost been doubled, or increased in a still greater proportion, it would have been false economy to have shrunk from it, and have put the settlers in possession, or rather to have allowed them to take possession, of land the boundaries and contents of which could not have been relied upon, or subsequently verified. The expense of the surveys in all new colonies is now defrayed out of the proceeds of the sales of land; and proof of the recognition of the advantages of the accurate delineation of the boundaries of property, features of the ground, and main lines of

[^68]roads, \&c., is given by the system adopted by the New Zealand Association, in the establishment of the "Canterbury Settlement," of charging for all land the uniform price of $3 l$. per acre* (instead of the $1 l$. fixed as the lowest upset price in the other Australian colonies, where the plan of selling land by auction is in force), to provide funds for a superior nature of survey, and a variety of works of a public character; the proportions being, $10 s$. per acre as the price of the waste land; 10s. per acre for the cost of the surveys, formation of roads, and other miscellaneous expenditure; 208 . per acre to be devoted to the purposes of emigration; and another 208 . per acre to ecclesiastical and educational purposes.

The boundaries of what in the Australian colonies are termed "Runs," for depasturing sheep and cattle, are not generally marked out during the survey, but are described by reference to the trigonometrical stations, and other known fixed points; the approximate distances and bearings of the lines being stated. As portions of this land are at all times liable to be purchased by individuals after a due stipulated notice to the occupier of the run, who pays yearly a trifling sum for his licence, it would of course be a waste of labour to mark out such temporary divisions; but the settlers themselves very frequently define their respective limits, either by blazing the trees in a wooded country, or by running a plough line across it in an open one.

As regards the interior division of a colony into Counties, \&c., the following general regulations, established many years since, are still in use :-

Counties are to contain, as nearly as may be, 40 miles square; hundreds, 100 square miles; and parishes, 25 square miles.

Natural divisions, such as rivers, streams, highlands, \&c., to constitute as much as possible these boundaries; and, for the purpose of obtaining a well-defined natural boundary, a smaller or greater quantity than the above averages is permitted; but not to exceed or fall short of such established areas by more than one-third of each.

[^69]Reserves are allowed to be made for all necessary public roads and other internal communications, either by land or water; also for the sites of towns, villages, school-houses, churches, and otherpurposes of public utility and convenience.
When the division between Provinces or Counties, or other lines of territorial demarcation, is represented, either altogether or in part, by a meridian line; or a line having any fixed angle with the meridian; or by a portion of the arc of a parallel (as is the case in many of the Australian provinces); it is of course necessary to be able to determine and mark upon the ground with accuracy such meridian or parallel, directions for which are given in the last chapter on Practical Astronomy. Most useful practical information upon this subject will also be found in the narrative of the survey, and marking of the boundary between the British possessions in North America and the United States of America, in 1842, published by Major Robinson, Royal Engineers, in the second and third volumes of the "Corps Papers."

Operations of this nature, if conducted with the very great care and precision that were bestowed upon the boundary alluded to, involve the perfect knowledge of the manner of using and adjusting the transit, and altitude and azimuth instruments; and also the management of chronometers. The boundary line between South Australia and what now constitutes the province of Victoria, (the 141st degree of east longitude) was however determined (and since marked on the ground for a considerable distance,) under the New South Wales Government, by one of their surveyors*, with only a sextant, a pocket chronometer, and a small $3 \frac{1}{2}$-inch theodolite; but though the work was performed with the greatest care and attention, and with probably as great a degree of accuracy as could be obtained with these inperfect instruments; the result can of course only be looked upon as an approximation far too vague for the determination of a division of importance. The North American boundary, on the other hand, may perhaps have been defined with more precision than was absolutely necessary in a line of demarcation running for its whole length through a wild uncleared country.

[^70]Having now gone through the method of dividing the land into minute sections for occupation, and its further division for territorial purposes; this chapter will conclude with a short reference to the objects to be held in view in conducting exploring expeditions beyond the bounds of the settled districts, for the purpose of adding to the geographical knowledge of the country and developing its resources; which objects are very similar in character to those described in page 3, when treating of the preliminary operations of a survey in a newly-formed colony.

The nature of the country to be traversed will, as far as this is known, indicate the method of travelling that must of necessity be adopted. Extensive inland water communication, as in the Canadas, points to the canoe as the readiest mode of transport ; comparatively open and generally grassy land, as in Australia and Southern Africa, requires the use of horses and oxen; whilst in many other countries the thick underwood can, in parts, be traversed only on foot; and barren deserts by the aid of camels. These different modes of locomotion evidently all require different preliminary arrangements. The objects in view, however, are much the same in all cases*; viz. a knowledge of the climate, soil, native population, geological formation, botanical character, of the country, and its resources of all kinds; as well as the delineation (as perfect as the time and means that are available will admit) of the natural features of the ground.

All points known as portions of the settled country being soon left behind, the explorer has to trust to his own judgment as to the best directions in which to conduct his party; to his own energy in overcoming the natural obstacles that he will be certain to encounter ; and his own practical skill in fixing at proper intervals his different positions by means of astronomical observations, and mastering rapidly the general massive features of the ground for the purpose of making a rough sketch of the country passed over, showing more particularly the directions of the principal ranges of hills, and of rivers, and watercourses.

In a large party these labours may often be subdivided ad-

[^71]vantageously; but the leader must remember that the entire responsibility still rests with him; and if he does not actually participate in every portion of the work, he must nevertheless exert a general influence over the whole.

As regards the fixing, with as much accuracy as may be attainable, the various positions of encampments, the directions and sources of rivers, and all marked prominent features ; much assistance is to be obtained by carrying on, as far as it can be done, a species of rough triangulation (with a sextant or other portable instrument), from the extreme trigonometrical stations, or any prominent landmarks the positions of which are known and represented on the plans. This may however very soon become impracticable from the nature of the country or other causes, and the traveller then finds himself much in the same predicament as at sea, having little beyond his dead reckoning to trust to for the delineation on paper of his day's work. In this position he must look to the heavens for his guide; and hence the necessity for his becoming himself, or having with him, a good and rapid observer.

At sea, the latitude is always obtained at noon by a meridian altitude of the sun* (when visible); "sights," as they term observations of single altitude for time, having been taken three or four hours before. The latitude obtained at noon is then reduced by dead reckoning to what it would have been at the time and place of the morning observation, (using the traverse table;) and with this deduced latitude the hour angle is computed \dagger, and the equation of time, plus or minus, applied for the mean local time; which, when compared with the Greenwich time, shown by the chronometer, (allowing for its rate and error), gives the longitude east or west of Greenwich at the time of the morning obseroation.

By applying, by dead reckoning, the change in longitude between that time and noon, the longitude of the ship at noon is obtained,the latitude has already been found by direct observation,-and the two determinations afford the means of recording upon the chart the position of the ship at noon on that day.

Somewhat similar to the above proceeding must be that of the

[^72]explorer in a wild unknown tract of country. He would not probably find it convenient always to obtain his latitude at noon; but he can generally do so, and more correctly, at night*, by the meridian altitude of one or more of the stars of the first or second magnitude, whose right ascension and declination are given in the Nautical Almanac. His local time can, immediately before or after, be ascertained by a single altitude of any other star out of the meridian (the nearer to the prime vertical the better); and if he carries a pocket chronometer upon which any dependance can be placed, he has thus the means, by comparison with his local time, of obtaining his approximate longitude, and of laying down his position upon paper.

In travelling, the rate of the chronometer will probably be found to vary; but as frequent halts of two or three days are likely to occur, these opportunities should never be lost of ascertaining the change of rate. The longitude should also be obtained occasionally by lunar observations on both sides of the meridian; or by some of the other methods given in the last chapter.

The results deduced from such observations must not be relied upon within ten or twelve miles, but a careful observer should rarely exceed these limits; and his latitude ought always to be within half a mile, or under the most unfavourable circumstances, one mile, of the truth.

With these all-important data, enabling him to fix with approximate accuracy point after point \dagger in his onward course, the explorer can have no difficulty in interpolating by angles, taken with a sextant or with an azimuth compass, all strongly-marked prominent features, or in laying down his route upon paper correctly enough for the purposes of identifying particular spots, and giving a faithful general representation of the features of the ground he has travelled over. The value of this sketch will be much enhanced by its having recorded on it, as nearly as they can be ascertained by the mountain barometer or aneroid \ddagger, or by the temperature at

[^73]which water is found to boil*, the altitudes of the most important positions, as the summits of hills, the levels of plains, and sources of springs and rivers.

Daily meteorological observations, even of the most simple character; such as merely recording the readings of the thermometer and barometer at stated times, will also prove of essential service as illustrative of the climate; and these will be of additional value if accompanied by a record of the quantity of rain fallen on different days, should any portion of the party be stationary for sufficient length of time at any one spot, to make these observations. If not provided with a rain gauge of a better description, a tin pipe with a large funnel, the area of the top of which bears a certain proportion to that of the tube, will answer perfectly to measure the quantity of water fallen. A light graduated wooden rod is fixed in a cork float, and indicates, above the level of the top of the funnel, the number of inches;-the graduations of the rod of course being proportioned to the ratio between the areas of the surface of the funnel and that of the tube. Thus, if the proportion is 10 to 1 , the measuring
 rod will be lifted 10 inches for every inch of rain.

* See page 111.

CHAPTER X.

GBODH8ICAL OPERATIONS CONNECTED WITH A TRIGONOMETRICAL SURVEY.

In the words of SirJ. Herschel, " Astronomical Geography has for its objects the exact knowledge of the form and dimensions of the earth, the parts of its surface occupied by sea and land, and the configuration of the surface of the latter regarded as protuberant above the ocean, and broken into the various forms of mountain, table land, and valley."

The form of the earth is popularly considered as a sphere, but extensive geodesical operations prove its true figure to be that of an oblate spheroid, flattened at the poles, or protuberant at the equator; the polar axis being about sto part shorter than the equatorial diameter ${ }^{*}$. This result is arrived at by the measurement of arcs of the meridian in different latitudes, by which it is ascertained beyond the possibility of doubt, that the length of a degree at the equator is the least that can be measured, and that this length increases as we advance towards the pole; whence the

[^74]greater degree of curvature at the former, and the flattening at the latter, is directly inferred.

Our "diminutive measures" can only be applied to comparatively small portions of the surface of the earth in succession; but from thence we are enabled, by geometrical reasoning, to conclude the form and dimensions of the whole mass.

There are two difficulties attending the measurement of any definite portion of the earth's circumference, (such as one degree, for instance *, in the direction of the meridian, independent of those caused by the distance along which it is to be carried : the first is, the necessity of an undeviating measurement in the true direction of a great circle; and the second, the determination of the exact spot, where the degree ends.

The earth having on its surface no landmarks to guide us in such an undertaking, we must have recourse to the heavens; and though by the aid of the stars \dagger we can ascertain when we have accomplished exactly a degree, it is far more convenient to fix upon two stations as the termini of the arc to be measured, having as nearly as possible, the same longitude, and to calculate the length of the arc of the meridian contained between their parallels from a series of triangles connected with a measured base, and extending along the direction of the arc. From the value thus obtained, compared with the difference between the latitudes of the two termini determined by a number of accurate astronomical observations, can be ascertained of course the length of one degree in the required latitude.

The measurement of an arc of the meridian, or of a parallel, is perhaps the most difficult and the .most important of geodesical operations, and nothing beyond a brief popular description of the

[^75]modes of proceeding which have been adopted in this country, and elsewhere, can here be attempted. For the details of the absolute measurement of the bases from which the elements of the triangles were deduced, as well as the various minute but necessary preliminary corrections, and the laborious analysis of the calculations by which the length of the arcs were determined from these data, reference must be made to the standard works descriptive of these operations.

At the end of the second volume of the "Account of the Operations on the Trigonometrical Survey of England and Wales," will be found all the details connected with the measurement of an arc of the meridian, extending from Dunnose in the Isle of Wight, to Clifton, in Yorkshire. The calculations are resumed at page 354 of the third volume; the length of one degree of the arc resulting from which, in latitude $52^{\circ} 30^{\circ}$, (about the centre of England,) being equal to 364,938 feet.

An arc of a parallel was also measured in the course of the trigonometrical survey between Beachy Head and Dunnose, in 1794, but fault has been since found with the triangulation, and corrections have been applied to the longitudes deduced therefrom, which are alluded to in "The Chronometer Observations for the difference of the longitudes of Dover and Falmouth," by Dr. Tiarks, published in "The Phil. Trans. for 1824," and in Mr. Airy's paper " On the Figure of the Earth."

The arc measured by Messrs. Mechain and Delambre between the parallels of Dunkirk and Barcelona, described in detail in the " Base du Système Métrique Décimal," had for its object, as the title of the work implies, not only the determination of the figure of the earth, but also that of some certain standard, which, being an aliquot part of a degree of the meridian in the mean latitude of 45°, might be for ever recognised by all nations as the unit of measurement. To have any idea of the labour and science devoted to this purpose, it is necessary to refer to the work itself, in which will be found the reasons for preferring a portion of the measurement of the surface of the globe involving only the consideration of space, to the length of a pendulum vibrating seconds having reference both to time and space. In addition to the determination of this standard of linear measurement, which was
denominated the " metre," and defined to be the ten-millionth part of the quarter of a great circle passing through the poles *, the committee, consisting of all the most distinguished scientific men on the Continent, agreed also upon a standard of weight derived from the same source. A cube, each side $\frac{1}{10}$ part of the metre, or a " decimetre," (chosen on account of its convenient size,) was supposed to be filled with distilled water of the temperature of ice just melting; and the weight of the fluid constituted the "killogramme." This temperature was selected as being pointed out by nature, and independent of any artificial gradations; and also, as being the point at which the density of water is nearly a maximum, as it expands immediately on soledifying; although dowon to about 40° it continues gradually to condense. No other substance, either liquid or solid, combines so many recommendations; but the difficulty that arose was to construct a solid mass representing this weight of water, which might be kept as a standard; their method of overcoming this is explained at pp. 563, 626, and the following pages of the third volume. "Bodies of unequal specific gravities may weigh equally in one state of the atmosphere, but not so in one of either greater or less density, and a vacuum was therefore of necessity resorted to." In the words of the report, (vol. iii. p. 565,) " C'est au poids du decimètre cube d'eau distillée, à sa plus grande densité, qù'on doit faire égal le poids d'une masse solide donnée, tous les deux étant supposés dans le vide; voilà a quoi se reduisoit la question de la fixation de l'unitè de poids." In the end, cylinders of platinum and of brass were constructed, of precisely the same weight as the killogramme of water, both weighed in a vacuum. These two, from the difference of their masses, evidently would not

[^76]weigh alike in the air. A brass cylinder, (of which several were made,) was kept as the standard for public use; the platinum presented to the "Institut," to be deposited there as " le representatif d'une masse d'eau prise à son maximum de condensation, contenue dans le cube du decimètre, 'et pesée dans le vide."

During the progress of these operations, observations were made by Borda, (whose repeating circles of 16 and $16 \frac{1}{2}$ inches diameter were used in triangulation,) on the length of a pendulum vibrating seconds at the level of the sea, in the latitude of 45°, at one determinate temperature. The length of this pendulum (of platina) was ascertained in millimetres, and was declared by the Committee to be so accurate, as to serve, in case of any accident happening to the standard, to construct again the unit of measurement without another reference to an arc of the meridian.

The prolongation of the measurement of this arc from Barcelona to Formentera, the most southerly of the Balearic Isles, and its connection with England and Scotland, was published in 1821 by Messrs. Biot and Arago (under whom the operations were conducted), in a work entitled "Recueil des Observations Géodesiques, Astronomiques, et Physiques." The whole arc measured amounted nearly to $12 \frac{1}{2}^{\circ}$, and was crossed at about half its length by the mean parallel of 45°.

The following table, taken from Mr. Airy's "Figure of the Earth," published in the "Encyclopædia Metropolitana," shows the length of the principal arcs of meridian and parallel that have been measured in different latitudes:

ABOS OF MERIDIAN.	Latitude of Mid. Point.		Amplitude of Arc.			Length in Eng. ft.
Peruvian Arc, calculated by Delambre		$31^{\prime} 0^{\prime \prime}$		$8^{\circ} 7$	$8^{\prime \prime} \cdot 1$	1131057
Maupertuis' Swedish Arc	66	1987		57	$30 \cdot 4$	351832
French Arc, by Lacaille and Cassini	46	522	8	20	0.3	3040605
Roman Arc, by Boscovich	42	590	2	9	47	787919
$\left.\begin{array}{c}\text { Lacaille's Arc, near the Cape of Good } \\ \text { Hope }\end{array}\right\}$		1830	1	13	$17 \cdot 5$	445506
American Arc, by Mason and Dixon	39	120	1	28	45	538100
Prench Arc, from Formentera to Dunkirk	44	$51 \quad 2$	12	22	12.6	4509402
Svanberg's Swedish Arc . . .	66	$20 \quad 10$	1	37	$19 \cdot 3$	593278
$\left.\begin{array}{r}\text { English Arc, from Dunnose to Burleigh } \\ \text { Moor }\end{array}\right\}$	52	3545	3	57	$13 \cdot 1$	1442953
Lambton's first Indian Arc	12	3221	1	34	56.4	574368
$\left.\begin{array}{c}\text { Lambton's second Indian Arc, as ex- } \\ \text { tended by Everest }\end{array}\right\}$		822	15	57	40.2	5794599
Piedmontese Arc, by Plani and Carlini .		$57 \quad 30$	1	7	$81 \cdot 1$	414657
Hanoverian Arc, by Gaufis	52	$32 \quad 17$	2	0	$57 \cdot 4$	736426
Russian Arc, by Struve	58	$17 \quad 37$	8	35	$5 \cdot 2$	1309742

Abcs of parallgl.	Latitude.	Bxtent in Longitude.	Length in Eng. ft.
Arc across the mouth of the Rhone, by $\}$ Lacaille and Cassini .	$43^{\circ} 311^{\prime} 50^{\prime \prime}$	$1^{\circ} 53^{\prime} 19^{\prime \prime}$	503022
General Roy's Arc, between Beachy $\}$ Head and Dunnose .	$\begin{array}{lll}50 & 44 & 24\end{array}$	$\begin{array}{lll}1 & 26 & 47.8\end{array}$	336099
Arc from Dover to Palmouth . . .	$\begin{array}{lll}50 & 44 & 24\end{array}$	$\begin{array}{lll}6 & 22 & 6\end{array}$	1474775
Arc from Padua to Marennes	$45 \quad 43 \quad 12$	$\begin{array}{lll}12 & 59 & 38\end{array}$	3316976

The detailed accounts of the measurements of these arcs are to be found in the works of Puissant, Cassini, Biot, Arago, Borda, in Colonel Lambton's papers in the "Philosophical Transactions" (1818 and 1823), and in the works of Captain Everest, published in 1839; and a popular description of the different methods adopted for the measurement of the bases, in each of these operations, is given in the paper "On the Figure of the Earth," in the " Encyclopædia Metropolitana," from which the foregoing table was extracted.

The conclusion drawn by Professor Airy from the above measures, is that " the measured arcs may be represented nearly enough on the whole, by supposing the earth's surface at the level of the sea, or at the level at which water communicating freely with the sea would stand, to be an ellipsoid of revolution whose polar semiaxis is 20853810 English feet, or $3949 \cdot 583$ miles; and whose equatorial radius is 20923713 feet, or $3962 \cdot 824$ miles. The ratio of the axis is $298 \cdot 33$ to $299 \cdot 33$: and the ellipticity (measured by the quotient of the difference of the axis by the smaller) is $\frac{80 \frac{1}{2 / 53}}{8,}$ or $\cdot 003352$. The meridional quadrant is 32811980 feet, and one minute $=6076 \cdot 2777$ feet."

Mr. Baily assumes the proportion between the polar axis and the equatorial diameter to be as 304 to 305 , whence the compression amounts to $\frac{1}{305}$.

The most general valuation of the compression is $\frac{3 \delta}{3 \delta}$, and in the numerous tables of compression, given by Dr. Pearson in his invaluable work on Practical Astronomy, it varies from $\overline{3} \frac{1}{60}$ to $\frac{1}{385}$.

Instructions for conducting the measurement of arcs of the meridian will be found in Francoeur, page 148, and also in Puissant's "Géodesie," vol. i. p. 242, and in the 12th chapter of
" Woodhouse's Trigonometry." Below is given a popular account of the methods of procedure.

The line AX in the figure annexed ($\mathrm{fg} . \mathrm{l}$) represents a portion of an arc of the meridian, on which it is required to measure the length of one degree. A and L are the two stations selected as the extreme points to be connected by a series of triangles ABC, BCD, DCE, \&c., running along the direction of the meridian

Fig. 1.

Pig. 2.

which passes through A. The vertices of these triangles, particularly the station L , are purposely chosen as near as possible to this meridian line; and the distance from \mathbf{A} to \mathbf{X}, the intersection of a perpendicular to the meridian drawn through \mathbf{L}, (the distance

L X being short,) or more correctly to \mathbf{X}^{\prime}, the point of intersection with this meridian of the parallel drawn through L , becomes the distance to be attained by calculation. The length of AB, or of any other side, is first accurately determined with reference to some measured base, and the angles at the vertices of all the triangles observed with the most rigid accuracy; and after the necessary corrections for spherical excess have been made, with the reductions to the centre and to the horizon if required *, the sides of the triangles are calculated from these data, as if projected on the surface of the globe, at the mean level of the sea. The azimuths of all these sides also require to be known, that is, the angles they respectively make with the meridian, which can be calculated from CAX, or any other azimuth which has been observed; and the latitudes of the two extreme stations must be ascertained with all the minuteness of which the best instruments are capable \dagger, for comparison with the distance obtained by calcution between them. The first method that was adopted of ascertaining from these data the required length of $\mathbf{A X}$, is termed that of oblique-angled triangles, described in Franceeur's " Geodesie," page 151 ; in "Puissant," vol. i. page 243 ; in the "Base du Système Métrique;" and in p. 277 of Woodhouse's "Trigonometry." It consists in calculating the distances A M, M M', \&c., on the meridian line between the intersections of the sides of these triangles, or their prolongations, as at \mathbf{N}; their sum evidently gives the total length $\mathbf{A} \mathbf{X}$.

The preliminary steps of the second method are the same; but instead of finding the distances $\mathbf{A M}, \mathrm{MM}^{\prime}$, \&c., the perpendiculars to the meridian $\ddagger \mathrm{B} b, \mathbf{C} \boldsymbol{c}, \mathrm{D} d$, are calculated (page 246, Puissant's "Géodesie," vol. i.), the azimuths of all the sides being known; and from thence are obtained the distances on the meridian $\mathbf{A b}, \mathbf{A c}, c \mathbf{N}, \& c$., and of course the total length $\mathbf{A X}$. This method was introduced by Mr. Legendre, and has been partly adopted in the calculation of the arc measured between Dunkirk

[^77]and Barcelona described in the " Base du Système Métrique," as also on that between Dunnose and Clifton, it being considered not only more expeditious, but also more correct. Another advantage of this method is (if all the triangles are intersected by. the meridian), that by calculating the various portions of which the arc is composed from the right-angled triangle formed on each side of the meridian separately, one result serves as a check upon the other.

A modification of this method is described in Puissant's " Géodesie," page 248, which consists in constructing through the vertices of the triangles parallels both to the meridian AX and the perpendicular A Y, without taking any account of the spherical excess. The intersections of these lines form, with the sides of the triangles, right-angled triangles, of which those sides are the hypothenuses; and the azimuth of each being known, all the elements can be ascertained, as is evident by reference to fig. 2. In this manner, the distances of several places from the perpendicular, and the meridian passing through the observatory of Paris, were calculated by Cassini.

The third method (" Puissant," vol. i. page 316) of ascertaining the length of the arc $A X$ is by determining the geographical positions of the vertices of the triangles extending along the meridian, and calculating the difference of their parallels of latitude projected on the meridian, the sum of these being the measure of the arc.

The measure of an arc of a parallel is calculated by a similar process, which is described at page 319 of the same work.

The methods of calculating, geodesically, the latitudes, longitudes, and azimuths of the different stations from one meridian, with the rigid accuracy required in such operations as the measurement of an arc of the meridian or parallel, will be found fully explained in the 12th chapter of Woodhouse's "Trigonometry;" in the 18th chapter of Puissant's " Géodesie;" and in "Francœur." Their determination by astronomical observations will be treated of hereafter.

On the supposition that the earth is a sphere, the calculations are resolved into the solution of spherical triangles.

The accurate length of the arc on the surface of the earth, between two very distant places whose latitude and longitude have
been determined, is, on account of the spheroidal figure of the globe, a problem of great difficulty, and of no real practical utility;-it is fally investigated in Puissant's "Géodesie," vol. i., page 296*. Between stations, however, within the limits of triangulation, it is often useful to calculate the distance as a check upon the geodesical operations; and in the length of an extended line of coast, or in a wild country, where triangulation may be, from local obstacles or want of means, quite impossible, the solution of this problem is of great importance for the purpose of laying down upon paper the positions of a certain number of fixed stations, between which the interior survey has to be carried on; and it is, within such bounds, one of easy application, particularly in the latter case, where the observations themselves are generally taken with portable instruments, and not with minute accuracy.

In the accompanying figure, P is the pole of the earth (considered as a sphere), and S and \mathbf{S}^{\prime} the two stations, whose latitude and longitude are determined; the angle SPS^{\prime} is evidently measured by the difference of their longitude, and PS and PS' are their respective latitudes; the solution of the spherical triangle PSS^{\prime} then gives the length of the $\operatorname{arc} \mathbf{S S}^{\prime}$.

If it is possible, when observing at S and S^{\prime}, to determine the azimuths of these stations
 from each other, that is, the angles PSS' and PS'S, a more accurate result will be obtained, as these angles can be determined with precision, whereas the angle P depends upon the correctness of the observations for longitude at each station, which with portable instruments is always, at best, but a close approximation \dagger; and the errors in the determination of each may lie in the same, or in different directions. In geodesical operations, if it be possible, the reciprocal azimuths of stations should

[^78]alwoys be observed, as well as the angles contained between them and other trigonometrical points.

From these reciprocal azimuths, with the astronomical latitudes of each station, the difference of their longitudes, or the angle of inclination of their meridians, is found by Dalby's method of solution, which is applicable to spheroids. This mode of determining the difference of longitudes by observations of reciprocal azimuths was practised on the Ordnance Survey; and the analysis of the theorem is given at length in page 214 of Airy's "Figure of the Earth." In the course of the investigation it is proved, that the spherical excess in a spheroidal triangle is equal to that in a spherical triangle whose vertices have the same astronomical latitudes and the same difference of longitude; from whence results the following simple rule-
$\tan \frac{1}{2}$ diff. longitudes $=\frac{\left(\cos \frac{1}{2} \text { diff. lat. }\right)^{x}}{\sin \frac{1}{2} \operatorname{sum} \text { of lat. }} \times \cot \frac{1}{2}$ sum of azimuthal angles.
Generally, a small error in the latitudes produces no sensible error in the determination; but in the azimuths, accuracy is of vital importance; when the latitudes are small, their correctness becomes of consequence, and the method is not therefore well adapted for stations near the equator.

The angle at the pole formed by the two meridians being thus obtained, the distance SS^{\prime} between the stations can be found nearly in the triangle PSS^{\prime}; this arc, however, must be converted into its corresponding value in distance on the surface of the earth; and if its spheroidal figure be taken into account, the radius of curvature must be ascertained for the middle latitude $\frac{1}{2}\left(l-l^{\prime}\right)$.

On the other hand, to obtain geodesically the latitudes, longitudes, and azimuths of stations from others whose positions on the surface of the globe have been determined by triangulation, it is necessary to be able to convert any measured or calculated distances on the earth's surface into arcs; for which purpose also the radius of curvature of the arc in question is required, to obtain an accurate result. In a paper published by Mr. Galbraith, in the 51st number of the "Edinburgh New Philosophical Journal," tables are given to facilitate this preliminary computation, whether
the arc be in the direction of a meridian, of a perpendicular to the meridian, or forming an oblique angle with it-as also those for the azimuths, latitudes, and longitudes, and convergence of meridians.

The formula given in the "Synopsis of Practical Philosophy" for the radius of curvature at any point of the terrestrial meridian, supposing the earth to be an oblate spheroid, is as follows, a and b being the equatorial and polar semi-axes, l the latitude, $c=(a-b)$ the compression :-

$$
\begin{aligned}
r & =a-2 c+3 c . \sin 2 l \\
\text { or } & =a-\frac{c}{9}-\frac{3 c}{2} \cos 2 l
\end{aligned}
$$

At page 192 of Mr. Airy's " Figure of the Earth," the following method is given for determining the radius of curvature :-
" The latitudes of the places P and Q, whether on the same meridian or not, are the complements of the angles $p_{8} \mathrm{P}_{\text {, }}$ $q Q_{s}$ respectively, which are
 included by the verticals at the places, and the lines drawn to the celestial pole. And if S be any star which can be observed at both places, the angle $s \mathrm{P} p={ }_{s} \mathrm{PS}$ +SPp , and $s \mathrm{Qq}=s \mathrm{QS}+\mathrm{SQq}$; considering, therefore, the angles $\mathrm{SQ}_{\beta} ; \boldsymbol{s} \mathrm{PS}$ as equal, the difference of latitudes is the same as the difference of $\mathrm{SP} p, \mathrm{SQq}$; that is, it is the same as the difference of the zenith distances of the same star at the two places, and can therefore be easily found. Now, if the places \mathbf{P} and \mathbf{Q} be on the same meridian, their verticals will intersect in some point \mathbf{D}; and the difference of latitudes, which is the difference of $s \mathbf{Q q}$ and ${ }_{s} \mathrm{P} p$, or (Pr being parallel to Qq) the difference of $s \mathrm{Pr}$ and ${ }_{s} \mathrm{P} p$, is equal to $r \mathrm{P} p$ or QDP , the angles contained by the verticals. The length $P Q$ being known from measurement, and the angle $P \mathrm{DQ}$, or the difference of latitude, being found by observations of the zenith distances of a star, the length of $P D$ or $Q D$, or the radius of curvature, is found.
" Again, if T and V be two places on different meridians, and if planes be drawn through these places, and through the axis, AC, of the earth, the angle made by these planes (or the difference of the longitudes) may be determined astronomically. Now, in-
 stead of \mathbf{T} we have a place t, whose latitude is the same as that of V ; and if we draw $\mathrm{VW}, t \mathrm{~W}$ perpendicular to the axis, the angle between the planes will be the same as the angle $\mathrm{V} W \boldsymbol{t}$. The distance $\mathrm{V} \boldsymbol{t}$ being measured (or .otherwise obtained), and the angle $\mathbf{V W} \boldsymbol{t}$, or the difference of longitude being found, the length of VW , or $t \mathrm{~W}$, or the radius of a parallel, will be found. Either of the measures will give this line, which will materially assist in determining the earth's form and dimensions, but they cannot easily be combined : the difference of latitude can be ascertained with so much greater accuracy than the difference of longitude, that measures of the former kind have generally been relied upon."
This subject is still further pursued in the work from which the above extract has been made.
It may also be required to calculate with the greatest exactness the azimuths or true bearings of two distant stations from each other, the latitudes and difference of longitudes of these points having been determined by observation; as was the case in marking the North American boundary in 1845 , when one line 64 miles in length was cut through the dense Canadian forest upon bearings from each of the extremities computed by the following directions and formulæ furnished by Mr. Airy.
Convert the difference of longitude found in time, into arc.
From the latitudes of the stations compute the following for-mule:-

Tan $\frac{1}{\frac{1}{2}}$ sum of spherical azimuths

$$
=\frac{\cos \frac{1}{2} \text { diff. colat. }}{\cos \frac{1}{2} \frac{1}{\operatorname{sum} \text { colat. }}} \times \operatorname{cotan} \frac{1}{\frac{1}{2}} \text { difference longitudes. }
$$

Tan $\frac{1}{2}$ difference spherical azimuths

$$
=\frac{\operatorname{sine} \frac{1}{2} \text { diff. colat. }}{\operatorname{sine} \frac{1}{2} \text { sum colat. }} \times \text { cotan } \frac{1}{2} \text { difference longitudes. }
$$

The larger azimuth (at the place where the latitude is greatest)

$$
=\frac{1}{2} \text { sum azimuths }+\frac{1}{2} \text { diff. azimuths. }
$$

The smaller

$$
=\frac{1}{2} \text { sum azimuths }-\frac{1}{2} \text { diff. azimuths. }
$$

These azimuths, found for a sphere, are thus corrected for the earth's spheroidal form.

From the above spherical azimuths find the spherical amplitudes by taking the difference between each of them and 90°; for each case find an angle, a, by the formula*

$$
\sin a=\frac{\text { sine colatitude }}{\sqrt{75}}
$$

Then the tangent of each of the true spheroidal amplitudes=cosa \times tangent spherical amplitude; the azimuths being obtained by applying to these 90°, additive or subtractive, according to the case.

If, instead of determining astronomically and by the transmission of chronometers the absolute latitudes and the difference of longitudes of these distant stations, they had been connected by a series of triangles; and that from this triangulation it was required to obtain the true bearings of each point from the other for the purpose of running a straight line between them, the following is the simple process:-

Supposing A and B to be the two stations, connected, as in the figure, by a series of triangles, assume one side as a standard, say

$A C$; compute $C E$ as in a plane triangle; from this compute $C D$, DE; from DE compute DF; from DF compute DB. With the two known sides A, C and $C D$, and the angle $A C D$, compute

[^79]AD and the angle $\mathbf{C D A}$; subtract this from the sum of the three angles CDE, ED F, and FDB, and you have the angle ADB; with this angle and the two sides, AD and DB, compute the angle DBA; this is the difference between the bearing of \mathbf{A} from \mathbf{B}, and that of \mathbf{D} from B. The latter is known, or can be directly observed; whence the former is deduced.

In the same manner the azimuth of the line AB , or the bearing of \mathbf{B} from \mathbf{A}, can be ascertained.

On the North American boundary the azimuths were laid off with an altitude and azimuth instrument, and the line prolonged with a portable transit, by which the party sent on in front to take up the rough alignement for cutting a track through the dense forest were directed. A torch of birch bark was moved to the right or left, as required, by concerted signals from the transit, made by flashing small quantities of gunpowder in an open pan; both the lighted torch and the flashes of gunpowder, being visible for far greater distances* than were ever required.

By daylight heliostats were used for keeping the advanced party in the right direction.

The true bearings of the line of 64 miles in length were in this operation determined so accurately, that when the parties employed in marking it out from each extremity met about midway, the sum of their joint deviation from the true line was exactly 341 feet ; equal, as Mr. Airy observes, to "only one-quarter of a second of time in the difference of the longitudes, or only onethird of the error which would have been committed if the spheroidal form of the earth had been neglected." This slight error was corrected by running offsets at certain points along each line, proportioned, of course, to the distances from the extreme end.

The distances between two places of a ship at sea are generally resolved by plane trigonometry; the difference of latitude SL, and the azimuth represented by the angle $\mathrm{S}^{\prime} \mathrm{SL}$ and termed the course, forming a right-angled triangle, in which $S S^{\prime}$, the nautical distance, is determined; the other side $\mathbf{S}^{\prime} \mathrm{L}$,

[^80]termed the departure, being the sum of all the meridional distances passed over.

Again, in the triangle ABC: let A B represent the meridian distance (or departure), and the angle BAC be equal to the latitude, then $A C$, the hypothenuse, will be equal to the difference of longitude.

Also, if DB represent the nautical distance, and $C D$ the difference of latitudes, then $B C D$ will be a right angle, and BC, the departure, nearly equal to the meridian distance in the middle latitude. If, then, in the triangle ABC the angle ABC be measured by that middle latitude, A B, the hypothenuse, will be nearly equal to the difference of longitude between D and B.

For further information on this subject, no better work can be consulted than Riddle's
 " Navigation."

By the use of Mercator's "Projection," most of these questions can be solved without calculation. In this ingenious system the globe is conceived to be so projected on a plane that the meridians are all parallel lines, and the elementary parts of the meridians and parallels bear in all latitudes the same proportion to each other that they do upon the globe. The uses to which this species of projection can be applied, and the vast benefit its invention has proved to the navigator, will be evident by reference to any work on navigation.

The latitude and longitude of any place being known, that of any other station within a short distance can also be determined by plane trigonometry. Suppose the latitude and longitude of G for instance to be known, from whence that of 0 , an adjacent station, is to be determined; the distance $\mathbf{O G}$ must be measured, or obtained by triangulation, and the azimuth NOG observed; then the difference of longitude G L between the stations is the sine of the angle

LOG to radius $O G$; and $O L$, the difference of latitude, is the cosine to the same angle and radius. The following example will show the application of this simple method :-

The distance of a station $\mathbf{O}^{\prime}, 238$ feet due south of the Rl. Engr. Observatory at Chatham from Gillingham Church, was ascertained to be $7547 \cdot 4$ feet, and the angle $S O G$, the supplement of the azimuth, $=78^{\circ} 55^{\prime} 55^{\prime \prime}$; Gillingham Church being situated in 51° $23^{\prime} 24^{\prime \prime} \cdot 12$ north latitude, and $0^{\circ} 33^{\prime} 49^{\prime \prime} \cdot 41$ east longitude.
Then $\cos 78^{\circ} 55^{\prime} 55^{\prime \prime}-9 \cdot 283243$
$\log \quad 7547 \cdot 4-3 \cdot 877796$

1448•9-3.161039 Diff. of latitude (north), in feet.

And sine $78^{\circ} 55^{\prime} 55^{\prime \prime}-9.991846$
$\log \quad 7547 \cdot 4-3.877796$

7407• $-3 \cdot 869642$ Diff. of longitude (west), in feet.
The lengths of one second of latitude and longitude in latitude $51^{\circ} 23^{\prime}$ are-

Latitude 102.02 feet.
Longitude 63.41 feet.
$\therefore \frac{1448 \cdot 9+238}{102 \cdot 02}=16^{\prime \prime} \cdot 53$. Difference of latitude in arc,
and $\frac{7407}{63 \cdot 41}=116^{\prime \prime} \cdot 8=1^{\prime} 56^{\prime \prime} \cdot 8$. Difference of longitude in arc.

Gillingham Church	Latitude.		Longitude.
	$51^{\circ} 23^{\prime} 24^{\prime \prime} \cdot 12$	E.	$0^{\circ} 33^{\prime} 49^{\prime \prime} \cdot 41$
	$16 \cdot 53$	W.	$1^{\prime} 56$-8
Observatory	$51^{\circ} 23^{\prime} 40 \cdot 65$		$0^{\circ} 31^{\prime} 52 \cdot 6$

It is always necessary to ascertain the variation of the compass before plotting any survey, for the purpose of protracting such parts of the interior details as have been filled in by magnetic bearings, and also of marking the direction of the magnetic meridian upon detached plans. The laws of this variation are at present but little known; and it is only by accumulating a vast num-
ber of observations at different places, and at different periods, that the position of the magnetic poles and the annual variation and dip can be ascertained with anything like certainty.

A meridian line being once marked on the ground, the bearing of this line by the compass is of course the variation east or west. It can be traced with an altitude and azimuth instrument, or even a good theodolite, by observing equal altitudes and azimuths of the sun, or a star, on different sides of the meridian. With the latter object no correction whatever is required : the cross hairs are made to thread the star exactly (by following its motion with the tangent screws) two or three hours before its culmination; the vertical arc is then clamped to this altitude, and the azimuth circle read off. On the star descending to the same altitude, at the same interval of time after its transit, it is again bisected by the cross hairs, and the mean between the two readings of the azimuth circle gives the direction of the true meridian, which being marked out on the ground, its bearing is then read with the compass.

When the sun is the object observed, the altitude taken may be that of either the upper or lower, and the azimuth that of the leading or following limb; the mean of the readings of the azimuth circle does not necessarily therefore in this case give the true meridian; a correction must also be applied for the change in the sun's declination during the interval of time between the observations.

If the sun's meridian altitude is increasing, as is the case from midwinter to midsummer, his lower limb when descending will have the same altitude at a greater distance from the meridian than before apparent noon, and the reverse when it is decreasing. The following formula for this correction is taken from Dr. Pearson : -
$x=\frac{1}{2} D \times$ sect. lat. \times cosect. $\frac{1}{2} T$, where D is the change of declination * in the interval of time expressed by T .

Example :-In latitude $51^{\circ} 23^{\prime} 40^{\prime \prime}$ N. on May 12, 1838, the upper limb of the sun had equal altitudes.

[^81]At 9h. 54 m .26 .8 s. A.M.) $\left.\begin{array}{llll}2 & 5 & 46 & \text { P.M. }\end{array}\right\}$

By chronometer.
And the readings of the azimuth circle at these times were$311^{\circ} 47^{\prime} 20^{\prime \prime}$ morning observation. 474550 afternoon do.

	$\begin{array}{ccc} \mathrm{h} . & \mathrm{m} . & . \\ 12 & 0 & 0 \\ 9 & 0 & 0 \\ 54 & 26.8 \end{array}$	$\begin{aligned} & 360^{\circ} \\ & 311 \end{aligned}$	$\begin{array}{rr} 0^{\prime} & 0 \\ 47 & 20 \end{array}$
Distance from noon, A.m.	$2533 \cdot 2$	481	1240
$\begin{array}{lll} \text { h. } & \text { m. } \\ 2 & 5 & 83 \cdot \\ \hline \end{array}$	$48^{\circ} 12^{\prime} 40^{\prime \prime}$	azimuth 4	m.
2546	474550	ditto \mathbf{P}	P.M.
T=4 $41119 \cdot 2$	2)26 50	diff.	
or in space $31^{\circ} 24^{\prime} 54^{\prime \prime}$	1325		
	$360 \quad 0$		
	3594635	reading	of app

The sun's change of declination in one hour of mean time on May 12 appears, by the Nautical Almanac, $=37 \cdots 53$, therefore for 2 h .56 m ., the half interval, it is $=78^{\prime \prime} .5$.

$$
\begin{array}{lll}
\frac{\mathrm{D}}{2}= & 78^{\prime \prime} .5 \text { log. } & 1 \cdot 8948697 \\
\mathrm{~L}=51^{\circ} 23^{\prime} 40^{\prime \prime} \text { sec. } & 0 \cdot 2048465 \\
\frac{\mathrm{~T}}{2}=31^{\circ} 24^{\circ} \cdot 54^{\prime \prime} \text { cosec. } & 0 \cdot 2829690 \\
4^{\prime} \mathrm{l}^{\prime \prime} .37 & . & 2 \cdot 3826852
\end{array}
$$

Middle point $359^{\circ} 46^{\prime} 35^{\prime \prime}$
Correction $4 \quad 1 \cdot 4$
Correct reading of true meridian $359 \quad 42 \quad 33 \cdot 6$.

The magnetic bearing of the pole star, or of any circumpolar star at its upper or lower culmination, gives at once the variation of the compass; a meridian may likewise be traced by observing the azimuths of a star at its greatest elongations, and taking the mean.

If only one elongation is observed, the sine of the angular distance $=\frac{\text { sin polar distance of star }}{\text { cosine latitude }}$, which added to, or subtracted from, the observed azimuth, gives the direction of the meridian.

The time at which any star is at its greatest elongation is thus found. The cosine of the hour angle in space $=$ tan polar dist. x tan lat. This hour angle divided by 15 gives the interval in sidereal time.

The other methods of finding the variation of the compass by the amplitude of the sun at sunrise or sunset, and by his azimuth at any period of the day, requiring more calculation, will be found among the Astronomical Problems.

A meridian line can be marked on the ground, without the aid of any instrument, with sufficient accuracy to obtain the variation of the needle for common purposes, by driving a picket vertically into the ground on a perfectly level surface. At three or four hours before noon, measure the length of its shadow on the ground, and from the bottom of the picket, as a centre, describe an arc with this distance as radius. Observe, when the shadow intersects this arc about the same time in the afternoon; and the middle point between these, and the picket, gives the line of the meridian. It is of course better to have three or four observations at different periods before and after noon; and these several middle points afford means of laying out the line more correctly.

The method hitherto described of laying down stations by triangulation, or by means of distances calculated from astronomical observation, is, however, only applicable vithin certain limits; as, on account of the spherical figure of the earth, the relative positions of places on the globe cannot be represented by any projection in geographical maps embracing very large portions of its surface, except by altering more or less their real distances, the content of
various tracts of territory, and in fact, distorting the whole appearance, when compared with the different portions of the same country represented as plane surfaces.

Either a true projection or some arbitrary arrangement of the meridians and parallels is therefore necessarily adopted, and each place is marked on this skeleton according to its relative latitude and longitude. Those projections should be preferred in which the geographical lines are most easily traced, and whose arrangement distorts as little as possible the linear and superficial dimensions.

Descriptions of various projections will be found in the works of Puissant, Francceur, and other authors on the subject ; and some very useful explanations of the projections of the sphere, in a treatise on " Practical Geometry and Projection," published by the Society of Useful Knowledge.

The following short but clear definition of the three species of projection commonly used in maps, viz., the orthographic, stereographic, and Mercator's, is taken from Sir J. F. Herschel's "Astronomy :"
"In the orthographic projection every point of the hemisphere is referred to its diametral plane or base, by a perpendicular let fall on it, so that its representation, thus mapped on its base, is such as it would actually appear to an eye placed at an infinite distance from it. It is obvious that in this projection only the central portions are represented in their true forms, while the exterior is more and more distorted and crowded together as it approaches the edges of the map. Owing to this cause, the orthographic projection, though very good for small portions of the globe, is of little service for large ones.
"The stereographic projection is in a great measure free from this defect. To understand this method, we must conceive an eye to be placed at E , one extremity of a diameter ECB of the sphere, and to view the concave surface of the sphere, every point of which, as P, is referred to the diametral plane ADF perpendicular to E B by the

visual line P M E. The stereographic projection of a sphere, then, is a true perspective representation of its concavity on a diametral plane; and as such it possesses some singular geometrical properties, of which the following are two of the principal:-first, all circles on the sphere are represented by circles in the projection; thus the circle \mathbf{X} is projected into x : only great circles passing through the vertex \mathbf{B} are projected into straight lines traversing the centre C; thus BPA is projected into CA.
"Secondly, every very small triangle G H K on the sphere is represented by a similar triangle ghk in the projection. This valuable property ensures a general similarity of appearance in the map to the reality in all its parts, and enables us to project at least a hemisphere in a single map, without any violent distortion of the configurations on the surface from their real forms. As in the orthographic projection, the borders of the hemisphere are unduly crowded together; in the stereographic, their projected dimensions are, on the contrary, somewhat enlarged in receding from the centre."

Both these projections may be considered natural ones, inasmuch as they are really perspective representations of the surface on a plane; but Mercator's projection is entirely an artificial one, representing the sphere as it cannot be seen from any one point, but as it might be seen by an eye carried successively over every part of $i t$. The degrees of longitude are assumed equal, and of the value of those at the equator. The degrees of latitude are extended each way from the equator, retaining always their proper proportion to those of longitude; consequently the intervals between the parallels of latitude increase from the equator to the poles. The equator is conceived to be extended out into a straight line, and the meridians are straight lines at right angles to it, as in the figure. Altogether the general character of
 maps on this projection is not very dissimilar to what would
be produced by referring every point in the globe to a circumscribing cylinder, hy lines drawn from the centre, and then unrolling the cylinder into a plane. Like the stereographic projection, it gives a true representation as to form of every particular small part, but varies greatly in point of scale in its different regions-the polar regions, in particular, being extravagantly enlarged; and the whole map, even of a single hemisphere, not being comprisable within any finite limits.
The following simple directions are given by Mr. Arrowsmith for a projection, adapted to a map to comprehend only a limited portion of the globe; for instance, that between the parallels of 44°

and $48^{\circ} 30^{\prime}$ north latitude, and longitudes 9° and 18° east of Greenwich. Draw a line A B for a central meridian ; divide it into the
 points of division (say 46°) draw CD intersecting the meridian at right angles, and likewise draw lines through the other points parallel to C D.

Take the breadth in minutes of a degree of longitude in lat. 46° $=41 \cdot 63$; from M towards C and D, set off each way one-half of this, 20.84, (M E . M G). Again, from N lay off on each side one-half of the length of a degree in lat. $47^{\circ}=40.92-\mathrm{N} F, \mathrm{~N} H$. Measure the diagonals G H, E F, and putting one point of the compasses successively on F, G, H, and E, describe the arcs, $x x x x$.

Take $41 \cdot 68$, the whole measurement of a longitudinal degree in lat. 46°, and lay off the distance, GO, EO, intersecting the arcs $x x x$ at 00 . Again, take the value of a degree in latitude 47° $40 \cdot 92$, and lay off the distances E P, H P.
This process continued until the parallels of 46° and 47° are completed, the whole projection may be carried on in the same manner, the two parallels first drawn furnishing the respective points of each meridian.

It would occupy too much space to pursue the subject further; explanations of all the most useful projections will be found in the sixth chapter of Francœur's "Geodesie," and in other works of the same character.

CHAPTER XI.

PRACTICAL ASTRONOMY.

Berors proceeding to the solution of the few simple problems by which the latitude, longitude, and time can be determined under different circumstances, it is considered advisable to explain the meaning of such terms as are most constantly met with in practical astronomy, and the corrections necessary to be applied to all observations.
The Sextant; Reflecting Circle, or Dollond's Repeating Circle; with the Artificial Horizon and Chronometer; are the description of portable instruments generally used in taking astronomical observations. In an observatory, or for any extensive geodesical operation, instruments are required of firmer construction, and admitting from their size of more minute graduation; but these are mostly confined to permanent establishments.

In all reflecting instruments the angle formed by the planes of the two mirrors is only half the observed angle, but the arc or circle is graduated to meet this effect of the principle of their construction; thus an angle of 60° is marked on the limb of the sextant 120°; and the entire circle reads 720°.

Descriptions of the methods of using and adjusting the sextant and reflecting circle are given in Mr. J. Simms' "Treatise on Mathematical Instruments," which little work is, or should be, in the hands of every observer; but as no allusion is there made to the repeating circle*, which is, at all events in theory, the most

[^82]perfect of the class of reflecting instruments, a short description of the method of using it, is here given.

Set the vernier, which moves on the circumference of the inner circle (as do also the horizon glass and telescope at the extremities of arms having one common centre), to zero (or 720°), on the graduated outer circle, and clamp it. Unclamp the vernier at the end of the arm carrying the index-glass, which, when the two glasses are parallel, should read zero. Take the required altitude or angular distance by moving the index forwards till a perfect contact is obtained, and clamp it to the outer circle, noting the time if required, but merely reading approximately the angle.

Unclamp the arm to which the telescope is attached, and, reversing the instrument, make the contact again on the other side, by moving forward this arm concentric with that carrying the horizon glass, (which can be done very rapidly by setting it nearly to the approximate angle already read, but on the other side of the zero of the inner circle, which is graduated each way to 180°,) and perfect the observation by the tangent screw. The angle now read on the outer circle is evidently double that observed for the mean of the times, freed from any index error by the reversal of the instrument. This process may be repeated over and over again all round the circle as aften as required, and the last angle shown by the vernier of the horizon glass is the only one which requires to be read, and divided by the number of observations, for the mean angular measurement answering to the mean of the times.

Instead of setting the vernier at first to 720°, it may be read off at any angle, as with the theodolite; but the method described above is preferable.

The terms answering to terrestrial longitude and latitude, when referred to the celestial sphere, are right ascension and declination;

[^83]the former being measured on the equinoctial (or the plane of the equator produced to the heavens) commencing from the first point of Aries, which for many reasons has been taken as the conventional point of departure in the celestial sphere; and the latter on great circles perpendicular to the equinoctial and meeting at the poles, being reckoned north or south of this plane.

A confusion is caused, often puzzling to beginners, by the introduction of the terms longitude and latitude in the celestial nomenclature, having a different meaning from the same expressions as applied to the situation of places on the earth; they have reference to the ecliptic instead of the equinoctial; celestial longitudes commence also from the intersection of these two planes, called the "first point of Aries." This point having a constant gradual retrograde motion on the ecliptic, from causes which will be found clearly explained in the third chapter of Woodhouse's " Astronomy," under the head of "Precession of the Equinoxes," and at p. 282 of the work of Sir J. Herschel, already alluded to, it is evident that the longitudes, as well as the right ascensions and declinations, even of the fixed stars, are constantly undergoing a slight change, though imperceptible to measurement in short intervals of time. The corrections for their places on this account, as well as on that of their annual variations, aberration, and nutation, are all allowed for in the "catalogue of the hundred principal stars," given in the Nautical Almanac for every tenth day.

Great circles perpendicular to the horizon, and meeting in the zenith and nadir, are called vertical circles; on these the altitudes of objects above the horizon are measured; the complements to these altitudes are termed zenith distances; and the arc of the horizon contained between a vertical circle, passing through any object, and the plane of the meridian, is termed the azimuth of that object. The altitude and azimuth of any object being known, its place in the visible heavens at that moment is determined; whereas the latitude and longitude, or the right ascension and declination, fix its place in the celestial sphere.

The right ascension and declination of any celestial object can evidently be determined from its latitude and longitude, and vice versa; the obliquity of the ecliptic, or the angle it forms with the equinoctial, being known.

The sensible horizon is an imaginary plane tangential to the earth, at the place of the observer; whereas the rational horizon (to which all altitudes must be reduced by the correction for parallax) is a plane parallel to the former, passing through the centre of the globe: an altitude requires also another correction for the effects of refraction*, which it has been already explained, in page 71, causes the apparent place of any object to be always elevated above its real place; the correction is therefore subtractive.

The first correction alluded to,-that for parallax \dagger,-is always additive. This term, as applied in its limited sense to altitudes of celestial objects, is meant to express the angle subtended by the semi-diameter of the earth at the distance of the object observed. Altitudes of the moon, from her proximity to the earth, are most effected by parallax : it is also always to be taken into account in observing altitudes of the sun, or any of the planets; but the fixed stars have no appreciable parallax, owing to their immeasurable \ddagger distance from our globe.

In the figure below, HO is the sensible, and RL the rational horizon; S the real place of the object, and S^{\prime} its apparent place, elevated by refraction; $\mathrm{S}^{\prime} \mathrm{OH}$ is the angle observed; SOH the

altitude corrected for refraction, and SLR the same altitude corrected both for refraction and parallax, being equal to the angle $\mathrm{SOH}+\mathrm{OS} \mathrm{L}$, the parallax.

[^84]It is evident that the equatorial parallax of any object (which is that given in the Nautical Almanac), being subtended by the semi-diameter of the earth at the equator, is always the greatest, and that at the poles the least. The diminution, according to the latitude of the place of observation, can be obtained from tables constructed for the purpose. The parallax in any latitude is also greatest at the horizon, and diminishes as the object approaches the zenith, where it vanishes.
Another correction that must be applied to the observed altitudes of the sun or moon is that for their semi-diameters, plus or minus, according as the upper or lower limb has been taken *: this quantity is found for each day of the month in the Nautical Almanac.
When observations are made at sea, an allowance must be made for the height of the eye above the horizon : this correction, termed the dip, is evidently always subtractive; and in observing with a sextant, it is always necessary to ascertain and apply its index error, which term is meant to express the deviation of the reading of the instrument from zero, when the direct and reflected images of an object are made exactly to coincide, in which case the horizon and index glasses are parallel.
The usual method of ascertaining the amount of this error of the instrument in astronomical observations, is by measuring the diameter of the sun on different sides of the true zero, and is done as follows:-Set the vernier at about half a degree from zero on the graduated limb, and perfect the contact of the two limbs with the tangent screw \dagger, noting the reading: unclamp the index, and set the vernier again to about the same distance on the other side of zero, termed the arc of excess (which is divided for a few degrees for this purpose), observing also this reading, when the contact has been again perfected; half the difference will evidently be the index error, + when the reading of the arc of excess is the greatest, and - when that of the limb: thus,

[^85]Reading on the arc $32^{\prime} 10^{\prime \prime}$
On arc of excess $\quad 3320$
2) 110

Index error +035

These definitions are rendered more evident by reference to the figure below, taken from Sir J. Herschel's Treatise on Astronomy, published in the Cabinet Cyclopædia.
"Let C be the centre of the earth, N CS its axis; then are N and S its poles; E Q its equator; AB the parallel of latitude of
 in which an observer at A will see the elevated pole of the heavens; and $A Z$, the prolongation of the terrestrial radius $C A$, that of his zenith; NAES will be his meridian; NGS that of some fixed station, as Greenwich ; and GE, or the spherical angle G N E, his longitude, and EA his latitude. Moreover, if $n s$ be a plane

touching the surface in A, this will be his sensible horizon; $n A s$, marked on that plane by its intersection with his meridian, will be his meridian line, and n and s the north and south points of his horizon."
"Again, neglecting the size of the earth, or conceiving him stationed at its centre, and referring everything to his rational horizon, let the next figure represent the sphere of the hea-
vens; C the spectator; Z his zenith; and N his nadir; then will HAO, a great circle of the sphere whose poles are Z and N , be his celestial horizon; $\mathrm{P} p$ the elevated and depressed poles of the heavens; H P the altitude of the pole; HP Z EO his meridian; ETQ, a great circle perpendicular to $P p$, will be the equinoctial; and if r represent the equinox, $r \mathrm{~T}$ will be the right ascension, TS the declination, and PS the polar distance of any star or object S , referred to the equinoctial by the hour circle $\operatorname{PST} p$; and BSD will be the diurnal circle it will appear to describe about the pole. Again, if we refer it to the horizon by the vertical circle ZSM; H M will be its azimuth, MS its altitude, and ZS its zenith distance. H and O are the north and south, and e and w the east and west points of the horizon, or of the heavens. Moreover, if $\mathrm{H} \boldsymbol{h}, \mathrm{O} \boldsymbol{o}$, be small circles, or parallels of declination touching the borizon in its north and south points, $\mathrm{H} h$ will be the circle of perpetual apparition, between which and the elevated pole the stars never set; Oo that of perpetual occultation, between which and the depressed pole they never rise. In all the zone of the heavens between $\mathrm{H} h$ and $\mathrm{O} o$ they rise and set; any one of them, as S , remaining above the horizon in that part of its diurnal circle represented by ABa, and below it throughout all that represented by A Da."
From these figures it is evident that the altitude of the elevated pole is equal to the latitude of the spectator's geographical station, for the angle PAZ in the first, which is the co-altitude of the pole, is equal to NCA; CN and AP being parallels whose vanishing point is the pole. But NCA is the co-
 latitude of the place A, whence the altitude of the pole must be equal to the latitude. The equinoctial intersects the horizon in the east and west points, and the meridian in a point whose altitude is equal to the co-latitude of the place.

The natural standards of the measurement of time are the tropical year and the solar day, and these are in a manner forced upon us by nature, though, from their "incommensurability and want of perfect uniformity," they occasion great inconvenience, and oblige us, while still retaining them as standards, to have recourse to other artificial divisions. In all measures of space the subdivisions are aliquot parts; but a year is no exact number of days, or even an integer with an exact fractional part; and before the introduction of the new style into England in 1752, an error of as much as 11 days had thus crept into the calendar. By the present arrangement, every year whose number is not divisible by 4 without remainder, consists of 365 days; every year which is so divisible, but is not by 100 , consists of 366 days; every year again, which is divisible by 100 , but not by 400 , consists of only 365 days; and every year divisible by 400 , of 366 . The possibility of error is thus so far guarded against, that it cannot amount to one day in the course of 3000 years, which is sufficient for all civil reckoning, of which, however, astronomy is perfectly independent.

The three divisions of time for civil and astronomical purposes are the apparent solar, mean solar, and sidereal day. The apparent solar day is the interval between two successive transits of the sun over the same meridian; and from the path of the sun lying in the ecliptic inclined at an angle to the equator upon the poles of which the earth revolves, and the earth's orbit not being circular, it follows that the length of this day is constantly varying; so that, although it is the only solar time which can be verified by' observation, it is quite unfit for application to general use.

The mean solar day, which is purely a conventional measure of time, is derived from the preceding, and is the average of the length of all the apparent solar days in the year, as nearly as it can be divided; and this is the measure of all civil reckoning. Mean time is in fact that which would be shown by the sun if he moved in the equator instead of the ecliptic, with his mean angular velocity.

The difference on any day between apparent and mean time is termed the equation of time, and is given for every day of the
year at mean and apparent noon in the first and second pages of each month in the Nautical Almanac, additive or subtractive, according to the relative positions of the real, and the imaginary mean sun*.

A sidereal day is the time employed by the earth in revolving on its own axis from one star to the same star again; or the interval between two successive transits of any fixed star, which is always so nearly the same length, that no difference can be perceived except in long intervals of time \dagger, particularly in stars situated near the equator. A sidereal is $3^{\mathrm{m}} 55^{\circ} \cdot 91$ shorter than a mean solar day, and is also less than the shortest apparent solar day, as must be evident from the figure, where the earth, moving in its orbit, and revolving on its own axis, after any point on its surface A, has by its revolution brought the star S^{\prime} again on its meridian, must move also through the angle $\mathrm{S}^{\prime} \mathrm{ES}$, before the arrival of the sun S on the same meridian.

Both sidereal and apparent solar time are measured on the equinoctial, the former being at any particular instant the angle at the pole between the first point of Aries and the meridian of the observer; and the latter, that contained between this meridian and the meridian where the sun is at the moment of observation, both reckoned westward; hence the apparent solar time added to the sun's right ascension is the sidereal time, and when any object is on the meridian, the sidereal time, and the apparent right ascension of that object, are the same.

It is evident that the difference between the time at any two places on the earth's surface is measured by the same arc of the

[^86]equator, which measures the difference of their longitudes, the circumference of the circle representing 360 degrees or 24 hours; making 15 degrees of longitude $=$ one hour of time. To find the difference of longitude then between any two places, only requires us to be able to determine exactly the local time at each place, at the same instant ; for which purpose chronometers whose rates are known, and which have been set to, or compared with, Greenwich mean time, are used, particularly at sea where other means more to be depended upon, cannot, from the motion of the ship, and the constant change of place, be always resorted to.

From these explanations it will easily be seen that of the five following quantities, any three being given, the other two can be found by the solution of a spherical triangle, viz.:

1. The latitude of the place.
2. The declination of the celestial object observed.
3. Its hour angle east or west from the meridian.
4. Its altitude.
5. Its azimuth.

Thus in the triangle PZS, named from its universal application the astronomical tri-angle-
P is the elevated pole, Z the zenith, and S the star or object observed; and the five quantities above mentioned, or their com-
 plements, constitute the sides and angles of the spherical triangle Z PS, P Z being the co-latitude, PS the co-declination, or north polar distance, ZS the co-altitude or zenith distance, the angle Z PS the hour angle, and PZS the azimuth.

The further application of this triangle will be seen in the astronomical problems.

In all the ordinary observations made for the determination of the latitude, local time, \&c., the object observed may be either the sun, or a star whose declination and right ascension are known :
the latter is, wherever practicable, to be preferred, as the use of the sun always involves corrections for semi-diameter and parallax; also in many observations of the sun, such as those of equal altitudes for time, or for determining the direction of a meridian line, or circum meridian altitudes for finding the latitude,-still further corrections are requisite on account of the change of the sun's declination during the period embraced by the observations; which corrections are avoided by using a star.

The bisection of a star is likewise more to be depended upon than the observed tangent of the sun's limb. At sea, where minute accuracy is neither sought, nor to be obtained; and where at night the horizon is generally obscured, and often not to be discerned at all, this advantage is either not material, or not often to be taken advantage of; but on shore an artificial horizon is always used with reflecting instruments, and upon this the darkness of the night has no effect.

In all observations of a star, the clock or chronometer, if not already so regulated, must be reduced to sidereal time; with the sun, on the contrary, the timekeeper must be brought to mean solar time, whether the local or Greenwich time be required.

PROBLEMS.

PROBLEM I.

TO CONVERT SIDEREAL TIME INTO MEAN SOLAR TIME, AND
THE REVERSE.
This problem is of constant use wherever the periods of solar observations are noted by a clock regulated to sidereal time, or those of the stars by a chronometer showing mean time. A simple method of solution is given in the "explanation" at the end of the Nautical Almanac, which has the advantage of not requiring a reference to any other work, and also of all the quantities being additive.

The three tables used in this method are those of equivalents; the transit of the first point of Aries in the 22nd ; and the sidereal time at mean noon, in the 2nd page of each month.

To convert sidereal into mean solar time :-
To the mean time at the preceding sidereal noon, i. e. the transit of the first point of Aries, in table 22, add the mean interval corresponding to the given sidereal time, taken from the table of equivalents.

To convert mean solar into sidereal time :-
To the sidereal time at the preceding mean noon, found in table 2, add the sidereal interval corresponding to the given mean time also from the table of equivalents.

The mean right ascension of the meridian, or the sidereal time at mean noon given in the Nautical Almanac, is calculated for the meridian of Greenwich, and must, therefore, be corrected for the difference of longitudes between that place and the meridian of the observer.

One of Mr. Baily's formulæ for the solution of the same problem is-

$$
\begin{aligned}
& \mathrm{M}=(\mathrm{S}-\not \boldsymbol{R})-\boldsymbol{a} \\
& \text { and } \mathrm{S}=\boldsymbol{R}+\mathbf{M}+\mathbf{A}
\end{aligned}
$$

Where M represents the mean solar time at the place of observation, S the corresponding sidereal time, $\boldsymbol{\pi}$ the mean right ascension of the meridian at the preceding mean noon, found under the head of "sidereal time" in page 2 of each month; a, the acceleration of the fixed stars given in Baily's table 6 for the interval denoted by ($\mathrm{S}-\boldsymbol{R}$); and A the acceleration shown in his 7th table for the time denoted by M.

Examples.

Convert $8^{\text {h }} 1^{m} 10^{\text {s }}$ sidereal time, March 6, 1838, longitude $2^{\mathrm{m}} 21 \cdot 5^{\mathrm{s}}$ east, into mean solar time.

Mean time at preceding sidereal noon Greenwich, (table 22) | H. | | $\stackrel{8}{8}$ |
| :--- | :--- | :--- |

Correction for Longitude :

Table of Equivalents :-

8	k. ${ }_{0}^{\text {s. }}$	7	$\stackrel{1}{58}$	${ }_{41}^{\text {8. }} 3635$
0	10	0	0	$59 \cdot 8362$
0	010	0	0	9.9727

$759 \quad 51 \cdot 1724$

Mean time required . . . $9435 \cdot 7487$
Again, to convert $9^{\mathrm{h}} 4^{\mathrm{m}} 35 \cdot 748^{\mathrm{s}}$ mean solar into sidereal time.
0 right ascension at mean noon Greenwich, under head of "Sidereal Time," table 2. . . $22^{\text {h }} 55^{\mathrm{m}} 6 \cdot 18^{\text {s }}$

Correction for Longitude E:
$\left.\begin{array}{cc}141 \cdot 5 & 2 \cdot 1507564 \\ * \cdot 0027379 & \frac{3 \cdot 4374176}{1.5881740}\end{array}\right\}$
$9^{\mathrm{h}} 4^{\mathrm{m}} 35.748^{\mathrm{s}}$ solar time, equivalent sidereal

Sidereal time required	22	55	4.7926
9	6	$5 \cdot 2112$	
8	1	10.0038	

*-0027805 is the change in time of sidereal noon in one mecond; and $\cdot 0027879$ is the charge in the sun's mean right ascension in one second of time, or 9.8565 in one hour.

The same examples by Mr. Baily's formula :-

$\mathrm{M}=(\mathrm{S}-\nrightarrow \mathrm{R})-\boldsymbol{a}$	
A (Table 6, Baily)	$\begin{array}{rrr}9 & 6 & 5 \cdot 21 \\ - & 1 & 29.46\end{array}$
	$M=\begin{array}{lll}9 & 435.75\end{array}$
Again $\mathrm{S}=\boldsymbol{R}+\mathrm{M}+\mathbf{A}$	
	As above, $\mathbb{R}=2255 \quad 4.79$
	$75940 \cdot 54$
A (Table 7, Baily)	. $=+129.46$
	$S=\begin{array}{lll}8 & 10.00\end{array}$

PROBLEM II.

TO DETERMINE THE AMOUNT OF THE CORRECTIONS TO BE APPLIED TO OBSERVATIONS FOR AITITUDE, ON ACCOUNT OF THE ERPECTS OF ATMOSPHERIC REFRACTION, PARALLAX, SEMI-DIAMETER, DIP OF THE HORIZON, AND INDEX ERROR.

The formula given by Bradley for computing the value of atmospheric refraction is $r=a \cdot \tan (Z-b r)$, where Z represents the zenith distance of the object, and a and b constants determined by observation; a, the average amount of refraction at an apparent zenith distance of 45°, being assumed $=57^{\prime \prime}$; and $b=3^{\prime \prime} \cdot 2$.

The formula of Laplace is $\cdot 99918827 \times c \tan \mathrm{Z}-.001105603 \times c \tan { }^{3} \mathrm{Z}$, where c is assumed $=60^{\prime \prime} 66$.

The tables constructed from these formulæ are of course not exactly similar, on account of the difference of the constants, which are also slightly varied in the tables of Bessel, Groom-
bridge, \&c. They all suppose a mean temperature, and mean pressure of the atmosphere, corrections being in all cases required on account of the deviation of the thermometer and barometer from these assumed standards. These corrections are however rendered perfectly simple in operation, by the use of any of the numerous tables of refraction; those by Dr. Young being given in table 4 in this volume.

The rate of the increase of refraction is evidently, from the above formula, nearly as the tangent of the apparent angular distance of the object from the zenith in moderate altitudes. In very low altitudes (which should always be avoided on this account) the refraction increases rapidly and irregularly, being at the horizon as much as 33^{\prime}-more than the diameter of the sun or moon.

The next correction is for parallax, the explanation of which term has been given in page 165 . The sine of its value in any altitude decreases as the cosine of that altitude; but the parallax in altitude may be obtained from the horizontal parallax without computation, by the aid of tables.

The parallax given in any ephemeris is the equatorial, which has been shown in page 166 to be always the greatest. The first correction, where great accuracy is required, is on account of the latitude of the place of observation, but this is seldom necessary except in altitudes of the moon. The mean horizontal parallax of the sun is assumed $=8^{\prime \prime} \cdot 6$; but as our distance from this luminary is always varying in different parts of the earth's orbit, this value must be corrected for the period of the year. In table 8, the sun's horizontal parallax is given for the first day of every month which will facilitate this reduction, the proportional parts being found for any intermediate day. In the Nautical Almanac, however, this quantity is given more correctly for every tenth day. The parallax in altitude, corresponding to this horizontal parallax, can also be ascertained by inspection, from the same general table.

The parallaxes of the planets are given for every fifth day, in the Nautical Almanac ; but of those likely ever to be found useful in observation, Venus and Mars are the only planets to whose parallaxes any correction need be applied in observing with small instruments. The horizontal equatorial parallax of the moon
is to be found for mean noon and midnight of every day in the year, in the third page of each month, in the Nautical Almanac. The corrections for its reduction for the latitude of the place, and the moon's altitude, require, from their magnitude, more care than those of any other celestial body; but in observations at sea the former correction is generally neglected, and the latter is much facilitated by the use of tables giving the reduction for every 10^{\prime} of the moon's altitude*. The example given in this case will explain the method of making these corrections.

The semidiameter \dagger of the sun is given for mean noon on every day of the year, in the second page of every month of the Nautical Almanac; that of the moon in the third page of each month for both mean noon and midnight ; and those of the planets (which are seldom required) in the same table as their parallaxes. The correction for semidiameter is obviously to be applied, additive or subtractive, wherever the lower or upper limb of any object has been observed, to obtain the apparent altitude of its centre ;-the moon's semidiameter increasing with her altitude, from the observer being brought nearer to her as she approaches his meridian, must be corrected for altitude, which can be done by the aid of table $7 \ddagger$.

The dip of the horizon is a correction only to be applied at sea, and is necessary on account of the height of the eye above the

[^87]sensible horizon (on shore an artificial horizon is always used). A larger angle is evidently always observed; and this correction, which can be taken from the 1lth table, is always subtractive.

The correction for the index error has already been explained.

EXAMPLE I.

On March 15, 1838, the observed double altitude of the sun's upper limb, taken with a sextant, was $42^{\circ} 37^{\prime} 15^{\prime \prime}$, the thermometer at the time standing at $42^{\circ}, *$ and the barometer at 29.98 inches. Required the altitude, corrected for semidiameter, refraction, and parallax.

Observed double altitude $4237 \quad 15$

Index error
2) 423545
$\begin{array}{lllllll}\text { Apparent altitude } \bar{O} \quad . & & 17 & 52.5 \\ \text { Semidiamer }\end{array}$

- In rough altitudes, such as those taken at sea for latitude, no correction is made on account of the state of the thermometer or barometer.
problems.

EXAMPLE 11.

On April 6, 1838, at 9 p.m., Greenwich time, in latitude $51^{\circ} 30^{\prime}$, the double altitude of the moon's lower limb was observed $97^{\circ} 21^{\prime} 50^{\prime \prime}$. Index error of sextant, $50^{\prime \prime}$. Thermometer, 54°. Barometer, $30 \cdot 1$ inc. Required the corrected altitude.

Refraction.

$052 \cdot 3$
-1.7
$50 \cdot 6$

Parallax.

* This might have been obtained at once by inspection, by using the tables of Parallax.

In these examples no allowance has been made for the dip of the horizon, as the observations were made with an artificial horizon : with the fixed stars no correction is required for semidiameter or parallax.

PROBLEM III.
 TO DETERMINE THE LATITUDE.

Method 1st.-By observations of a circumpolar star at the time of its upper fnd lower culminations.

This method is independent of the declination of the star observed : the altitudes are observed with any instrument fixed in the plane of the meridian, or (not so accurately, of course) with a sextant or other reflecting instrument, at the moments of both the upper and lower transits of the star; or a number of altitudes may be taken immediately before and after its culminations, and reduced to the meridian, as will be explained. In either case, let \mathbf{Z} denote the observed or reduced meridional zenith distance of the star at its lower culmination, and r its refraction at that point; also let Z^{\prime} and r^{\prime} denote the zenith distance and refraction at its upper culmination. Then the correct zenith distance of the pole, or the co-latitude of the place, will be $=\frac{1}{2}\left(\mathrm{Z}+\mathrm{Z}^{\prime}\right)+\frac{1}{2}\left(r+r^{\prime}\right)$.

According to Baily, a difference of about half a second may result from using different tables of refraction.

Method 2nd.-By means of the meridional zenith distance (or co-altitude) of the sun, or a star whose declination is known.

The altitude of the sun or star being determined at the moment of its superior transit, as before explained, and corrected for refraction, and also for parallax and semidiameter when necessary, the latitude required will be-
$\mathbf{Z}+\mathbf{D}$, if the observation is to the south of the zenith.
$\mathrm{D}-\mathrm{Z}$, if to the north above the pole.
$180-(Z+D)$ to the north below the pole.
Z being put to denote the meridional zenith distance, and \mathbf{D} the declination (-when south).

This is evident from the figure below, $\mathrm{ES}, \mathrm{ES}^{\prime}$, and $\mathrm{QS}^{\prime \prime}$ being the respective declinations of the objects S, S^{\prime}, and $S^{\prime \prime}$; and PO or ZE the latitude of the place of observation, which is equal to $(Z S+E S)$ in the case of the star being to the south of the zenith Z ; or $E S^{\prime}-Z S^{\prime}$, when to the north above the pole P ; and to $180-\left(\mathrm{QS}^{\prime \prime}+\mathrm{ZS}^{\prime \prime}\right)$ when to the north below the pole.

Perhaps the rule given by Professor Young for the two first cases is more simply expressed thus:-Call the zenith distance north or south, according as the zenith is north or south of the object. If it is of the same name with the declination, their sum will be the latitude; if of different names, their difference; the latitude being of the same name as the greater.

EXAMPLE I.

On April 25, 1838, longitude $2^{\mathrm{m}} 30^{\mathrm{s}}$ east, the meridional double altitude of the sun's upper limb was observed with a sextant $104^{\circ} 3^{\prime} 57^{\prime \prime}$; index error $1^{\prime} 52^{\prime \prime}$; thermometer 56°; barometer 29.04 . Required the latitude of the place of observation.

Refraction and Parallax.

Declination.

Apparent noon at Greenwich	-	-	-	-			18	8	$9 \cdot 30$
Change for $2^{\text {m }} 30^{\circ}$ longitude		-	-	-	-		0	0	2.04
							18	8	$7 \cdot 26$

EXAMPLE II.
On March 31 , 1838, at $5^{\mathrm{h}} 12^{\mathrm{ma}} 57^{\text {s }}$ by chronometer, the meridian altitude of the moon's upper limb was observed $67^{\circ} 1^{\prime} 5^{\prime \prime}$; the index error of instrument being $-1^{\prime} 0^{\prime \prime}$; barometer $30 \cdot 1$ inc.; thermometer 51°; the approximate north latitude was estimated 52°, and longitude $2^{\mathrm{m}} 21^{\prime} 5^{\prime \prime}$ E. Required the latitude*.

[^88]

Semidiameter.

Refraction.

$66^{\circ}=$
$44^{\prime} \cdot 5=$.		$25 \cdot 9$			
		

Barometer +09
Thermometer - . 06

Refraction 25.03

Parallax.
Horizontal equatorial parallax, noon 5638.9
Midnight $56 \quad 13.6$
Difference in 12 hours $0 \quad 25 \cdot 3$
Corrected for $5^{\mathrm{n}} 12^{\mathrm{m}} 57^{\circ}$, and $2^{\mathrm{m}} 21^{\prime} \cdot 5 \mathrm{E}$. longitude . . . $56 \quad 27 \cdot 9$
Correction for latitude (see 4th Lunar Table, Pearson) . . . $0 \quad \mathbf{7 \cdot 1}$
Horizontal parallax 5620.8

Or by use of Table 8, Dr. Pearson 22 15•1

Declination.					
Time of observation	$\begin{array}{cc} \text { h. } & \text { m. } \\ 5 & 12 \end{array}$	$\begin{aligned} & 8 . \\ & 57 \end{aligned}$
Longitude (in time)	- . .	- .	- . .	02	21.5
Corresponding Greenwich mean time		- -	- . -	510	$35 \cdot 5$
At $5^{\text {a }}$	- . .	- -	N	2829	37.7
$10^{\text {m. }} 5$	- . .	- .	+	00	16.97
				$28 \quad 29$	$54 \cdot 67$

An observer not furnished with a mural circle, or other instrument fixed in the plane of the meridian with which to measure meridional altitudes, can obtain his latitude more correctly than by observing a single approximate meridional altitude with a sextant or other reflecting instrument, by taking a number of altitudes of the sun or a star near to, or on each side of the meridian, and from thence determining the correct altitude of the object at the time of its culmination.

This method, termed that of "circum-meridian altitudes," to the mean of which altitudes is to be applied a correction for its "reduction to the meridian," is susceptible of great accuracy; and the repeating circle, already described, is peculiarly adapted for these observations, on account of the rapidity with which they can be taken. The distance of the sun or star from the meridian (in time) is noted at the moment of each observation, by a chronometer when the former is the object, and by a sidereal clock (if there is one) when the latter, to save the conversion of one denomination of time into the other. The formula given by Mr. Baily, freed from the second part of the equation which it is seldom necessary to notice, is-

$$
x=\mathrm{A} \times \frac{\cos \mathrm{L} \cdot \cos \mathrm{D}}{\sin \mathrm{Z}} \text { where }
$$

x represents the required correction in seconds.
L, the latitude (known approximately).
D, the declination (minus when south).
Z, the meridional zenith distance, also known approximately from the above.

A, a quantity depending upon the horizontal angle of the object, and given in the 13th table, page 240, under the head of "Reduc-
tion to the meridian," being $=\frac{2 \sin ^{2} \frac{1}{} P}{\sin 1^{\prime \prime}}$ where $P=$ the horary angle at the pole, as shown by a well-regulated clock; which angle will change its sign after the meridional passage of the star.

Among the instructions drawn up by Mr. Airy for the guidance of the officers employed upon the survey of the North American Boundary, this method of determining the latitude with the altitude and azimuth instrument is recommended, and was constantly practised with stars near the meridian. The axis of the instrument is to be adjusted nearly vertical, and the cross axis nearly horizontal (great accuracy is not required), the telescope made to bisect the star upon its middle horizontal wire, and the time noted. Then read the large divisions with the pointer, and the two microscopes A and B; read also the level right hand and left hand.

Turn the instrument 180° in azimuth, and repeat these observa-tions-revert to the first position, and continue this process as often as may be thought necessary-note the barometer and ther-mometer-then add together

Reading of \mathbf{A}.
Reading of B.
And equivalent for left-hand level.
Subtract equivalent for right-hand level.
Divide the remainder by 2 , and apply the pointer reading of A for the uncorrected circle reading for the first observation.

The same process is repeated for the second and all the other observations.

For each observation correct the chronometer time for rate and error, and convert this into (if not already showing) sidereal time; take the difference between the sidereal time and the star's right ascension for the star's hour angle, which reduce to seconds of time and call p.

Then compute for each observation the number

$$
\left(\frac{225}{2} \sin 1^{\prime \prime}\right) \times \frac{\cos \text { I/at. } \times \cos \text { Star's Declination }}{\sin \text { Star's Zenith Distance }} \times p^{2},
$$

which is the correction in seconds of arc to the observed zenith distance to bring it to the true meridian zenith distance, and is always subtractive, except the star is below the pole. In applying
this correction however, to the circle readings, it will be additive, or subtractive, according as, by the construction of the circle, increasing readings represent increasing or decreasing zenith distances.

Half the difference of two corrected readings in opposite positions of the instrument is the star's apparent zenith distance on the meridian; or the mean of all the observations in one position may be compared with the mean of all those in the other, and half their sum is the zenith point.

To this zenith distance add the correction for refraction, taking into consideration the readings of the thermometer and barometer, and apply the star's declination for the day (from the Nautical Almanac) for the latitude.

The above instructions* apply only to stars observed near the meridian. The latitude can however, be obtained by similar observations of stars situated very far from the meridian, though this method would very seldom be resorted to.

When the sun is the object observed, a further correction must be made on account of the change in declination during the time occupied by the observation, which is expressed by

$$
-S \times \frac{E-W}{n}
$$

S being the change of declination in one minute of time, minus when decreasing.

E the sum of the horary angles observed to the east, expressed in minutes of time, and considered as integers.

W their sum to the west, and
n the number of these observations.
When a star is the object observed, and the time is noted by a chronometer, regulated to mean time, the value of A must be multiplied by 1.0054762 . Also, if the clock does not keep its rate either of sidereal or mean time accurately, a further correction is imperative; and A must be multiplied by $1+\cdot 0002315 r$, where r denotes the daily rate of the clock in seconds, minus when gaining, and plus when losing.

[^89]EXAMPLE.
On March 8, 1837, the following observations were taken, with a sextant, the chronometer being fast $9^{\mathrm{m}} 16^{\circ}$; index error of sextant, $-1^{\prime} 20^{\prime \prime}$; barometer, $29 \cdot 54$; thermometer, 50°.

Observ.	Distance from noon.	Value of Δ, table 13.
1	$10 \quad 29 \cdot 3 \mathrm{E}$.	$216 \cdot 1$
2	$9 \quad 24 \cdot 3$	$173 \cdot 8$
3	8 8-3	$130 \cdot 2$
4	$7 \quad 2 \cdot 3$	$97 \cdot 3$
5	$5 \quad 31 \cdot 3$	59.9
6	$4 \quad 23 \cdot 3$	37.9
7	$0 \quad 45 \cdot 3$	$1 \cdot 2$
8	$045 \cdot 7 \mathrm{~W}$.	$1 \cdot 2$
9	$2 \quad 37 \cdot 7$	$13 \cdot 5$
10	$3 \quad 37 \cdot 7$	$25 \cdot 9$
11	$435 \cdot 7$	$41 \cdot 3$
12	$6 \quad 6.7$	$73 \cdot 4$
13	$7 \quad 39 \cdot 7$	$115 \cdot 2$
14	$\begin{array}{ll}9 & 14 \cdot 7\end{array}$	$167 \cdot 8$
		7) 1154.7
		2) $164 \cdot 95$
Mean value of $\mathbf{A}=$		$82 \cdot 5$

$\begin{array}{lllllll}\text { Approximate zenith distance } & \text {. } & \text {. } & 56^{\circ} & 15^{\prime \prime} \\ \text { Declination } & \text {. }\end{array}$
Approximate latitude 5125
$\operatorname{Cos} \mathrm{L}=$. 9•7949425
$\operatorname{Cos} \mathrm{D}=$. 9.9984465
Ar. comp. $\sin \mathrm{Z}=$. 0.0800783
$\log A, 82 \cdot 5=$. 1.9164539
$(x)-61^{\prime \prime} 6=. \quad . \quad . \quad . \quad . \quad . \quad . \quad 1 \cdot 7899212$
Angles $\left\{\begin{array}{lllllll}\text { East }= & \text {. } \\ \text { West }= & \text {. } \\ 34.6\end{array}\right.$
14) $11 \cdot 1$

8
$\mathrm{S}=-.97$
$\cdot 8$

- $\quad 776$ Correction for change of sun's declination.

Mean observed zenith distance . . . $561538 \cdot 5$
Correction x. - 1.6
Ditto for declination - $0 \quad 0.7$
Correct meridian zenith distance . . . $\overline{561436 \cdot 2}$
Declination south - $45034 \cdot 9$
Latitude $5124 \quad 1 \cdot 3$

Method 3rd.-By the altitude of the pole star, at any time of the day ${ }^{*}$.

If the altitude of the pole star can be taken when on the meridian, its polar distance, either added to, or subtracted from, the altitude, gives at once the latitude; and when observed out of the meridian, as at the point S or S^{\prime} in the figure, the latitude can be easily obtained, as follows:-

Let Z P O represent the meridian, Z the zenith, P the pole, and $a \mathrm{~S} a^{\prime}$ the circle described by the polar star S, at its polar distance PS. The star's horary angle ZPS, or Z P S', is evidently the difference between its right ascension and the sidereal time of observation; and in the spherical
 triangle Z PS (or Z P S') we have ZS, PS, and the angle ZPS, to find ZP , the co-latitude. The result may be obtained with almost equal accuracy by considering $\mathrm{PS} \boldsymbol{c}$ as a plain right-angled triangle, of which Pc is the cosine of the angle $\boldsymbol{c} \mathrm{PS}$ to radius PS ; the distance $P c$ thus found is to be added to, or subtracted from, the altitude HS, according as the star is above or below the pole, which is thus ascertained:-If the angle ZPS^{\prime} be less than 6 , or more than 18 hours, the star is above the pole, as at S^{\prime}; if between 6 and 18 hours, it is below the pole, as at S .

By the tables given in the Nautical Almanac, the solution is even more easy, and has the advantage of not requiring any other reference. The rule is as follows:-
lst. From the corrected altitude subtract l^{\prime}.

[^90]2nd. Reduce the mean time of observation at the place to the corresponding sidereal time.

3rd. With this sidereal time take out the first correction from Table I., with its proper sign, to be applied to the altitude for an approximate latitude.

4th. With this approximate latitude and sidereal time take out from Table II. the second correction; and with the day of the month and the same sidereal time take from Table III. the third correction. These are to be alroays added to the approximate latitude for the latitude of the place.

EXAMPLE.

On Oct. 26, 1838, the double altitude of Polaris, observed with a repeating circle, at $11^{\mathrm{h}} 55^{\mathrm{m}} 30^{\mathrm{s}}$ mean time, was $105^{\circ} 44^{\prime} 63^{\prime \prime}$, the barometer standing at 29.8 ; thermometer, 50°. Required the latitude of the place of observation.

By the method given in the Nautical Almanac,-

Observed altitude 2) $\stackrel{\circ}{1054453}$

| Refraction | . | . | . | . | | . | - | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 44

Correction lst for sidereal time $\quad . \quad . \quad \frac{12821 \cdot 7}{512220 \cdot 8}$
Correction 2nd $\frac{+\quad 0 \quad 9.6}{512230.4}$

Correction 3rd +0 1 10.5
Latitude required $\quad 51 \quad 23 \quad 40.9$

The same example by spherical trigonometry :-

Then in the triangle Z P S, we have-
$\mathrm{ZS}=. \quad . \quad . \quad . \quad . \quad . \quad . \quad 37817.5$
PS = $13252 \cdot 4$

Angle P = $181327 \cdot$
To find Z P, the co-latitude.
The solution of which triangle gives-

Z P =	383621
And	2

By considering $\mathrm{SP} \boldsymbol{c}$ as a plane rightangled triangle, in which $\mathrm{P} c$, the correction to be subtracted, is the cosine of P to radius P S, the latitude is found by plane
 trigonometry within a few seconds of the above results.

Method 4th.-By an altitude of the sun, or of a star, out of the meridian, the correct time of observation being known.
By reference to the figure, it will be seen that this method simply involves the solution of the spherical triangle ZPS already alluded to, formed by the zenith, the pole, and the object at the time of observation; of which ZS , the zenith dis-

tance, P S, the polar distance, and the angle at P are known, and $\mathrm{Z} P$, the co-latitude, is the quantity sought.

The formula given by Baily, for finding the third side, when the other two sides and an angle opposite to one of them are given, is
$\tan a^{\prime}=\cos$ given angle \times tan adjacent side
$\cos a^{\prime \prime}=\frac{\cos a^{\prime} \times \cos \text { side opp. given angle }}{\cos \text { side adjacent given angle, }}$
and $x=\left(a^{\prime} \pm a^{\prime \prime}\right)$, which formula is used in the following examples:-

EXAMPLE 1 .

On May 4, 1838, the observed altitude of the sun's upper limb at 5 h .47 m .15 s . by chronometer was $14^{\circ} 44^{\prime} 58^{\prime \prime}$. The index error of sextant being $28^{\prime \prime}$, and the watch $3 \mathrm{~m} .34 \mathrm{~s}^{\circ} 4$ too fast. Barometer 29.9 ; thermometer 61 ; required the latitude.

In space		$\left\{\begin{array}{rlrlc} 5^{\mathrm{b}} & =75 & 0 & 0 \\ 47^{\mathrm{m}} & = & 11 & 45 & 0 \\ 5 \cdot 06^{\mathrm{s}} & = & 0 & 1 & 15 \cdot 9 \end{array}\right.$
Angle P		$864615 \cdot 9$
Cos P	$8646 \quad 15 \cdot 9$	$8 \cdot 7506671$
Tan PS	$74 \quad 046$	0.5428692
Tan a^{\prime}	11717	$\overline{9 \cdot 2935363}$
Cos a^{\prime}	11717	9.9917668
Cos ZS	$753450 \cdot 3$	$9 \cdot 3962296$
Ar. comp. P.	74046	$0 \cdot 5599998$
$\operatorname{Cos} a^{\prime \prime}=$.	$272858 \cdot 6$	9.9479962
a^{\prime}	11717	
$a^{\prime \prime}$	$272858 \cdot 6$	

$\mathbf{P Z}=$	$383615 \cdot 6$
	$90 \quad 0$
Latitude required	$512344 \cdot 4$

When the sun is the object observed, the hour angle \mathbf{P} (as in the last example) is the apparent time from apparent noon at the place of observation, converted into space; but with a star, it is its distance from the meridian, either to the east or west, according as it has or has not come to its culmination; and this angle is simply the sum or difference of the star's right ascension, and the time of the observation converted into sidereal time; to be multiplied by 15 for its conversion into space.

> Method 5th.-By two observed altitudes of the sun, or a star, and the interval of time between the observations.

> This problem is of importance, as its solution, though long, does not involve a knowledge of the correct time at the place of observation; and the short interval of time can always be measured with sufficient accuracy by any tolerable watch. Various methods have been devised to shorten the calculation of "double altitudes" by tables formed for the purpose, one of which may be found at page

231 of Riddle's " Navigation;" but the direct method by spherical trigonometry is most readily understood and easily followed.

Let S and S^{\prime} represent the places of the object at the times of the two several observations, (and they may be on different sides of the meridian, or, as in the figure, both on the same side); ZS and ZS^{\prime} then are their respective zenith dis-
 tances, and PS and PS^{\prime} their polar distances ; S P S' being the hour angle observed.

First-In the triangle PSS^{\prime}, the two sides PS and PS^{\prime} are given, with the included angle at P to find $S S^{\prime}$ and the angle PSS^{\prime}. Again, in the triangle ZSS^{\prime}, we have the three sides to find the angle ZSS^{\prime}, which, taken from PSS^{\prime} just found, leaves the remaining angle PSZ. Lastly-in the triangle PSZ we have PS, ZS, and the angle PSZ, to find PZ, the co-latitude sought. In a similar manner the latitude may be found by simultaneous altitudes of different stars, the difference of their right ascensions giving the angle SPS, without the use of a watch. Tables have been calculated by Dr. Brinkley, from which the distance SS^{\prime} can be obtained by inspection (allowing for the change in the right ascension of the stars after any long interval), and the calculation is thus considerably abridged. By an azimuth and altitude instrument, the latitude may also be found by the two altitudes, and the difference or sum of the observed azimuths of the sun or star.

Equal altitudes of the same star on different sides of the meridian, with the interval of sidereal time, between the observations, also furnish the means of ascertaining the latitude, and this method is most useful in a perfectly unknown country. The hour angle, east or west, will evidently be measured by half the elapsed interval of time; and in the triangle Z PS, we have this hour angle ZPS, the polar distance PS, and the coaltitude Z S, to find Z P the co-latitude; moreover, the hour angle being known, and also the right ascension of the star, the point of the equinoctial which is on the meridian, and consequently the
local sidereal time is determined, from which the mean time can be deduced.

The latitude may likewise be ascertained, independently of the graduation of the instrument, by placing the axis of the telescope of an altitude and azimuth circle* due north and south, so that the vertical circle shall stand east and west. The observations of the two moments T and T^{\prime} (in sidereal time), in which the star passes the wire of the telescope, will give the latitude from the following formula.

$$
\operatorname{Cot} L=\cot \text { declination } \times \cos \frac{1}{2}\left(T-T^{\prime}\right)
$$

If a chronometer set to mean time is used, the interval ($\mathrm{T}-\mathrm{T}^{\prime}$) must be multiplied by $1 \cdot 0027379$, or the value corresponding to the interval, found in the table for converting mean into sidereal time, must be added \dagger.

The accuracy of this method depends upon the correctness of the tabulated declination of the star, but a slight error in this will not affect the difference of latitude between two places, thus found. By observing on following days with the axis reversed, and taking the mean of the observations, any error in the instrument is corrected; this method is particularly recommended by Mr. Baily for adoption in geodesical operations, as the difference of latitude of two stations is obtained almost independently of the declination of the star, and the only material precaution to be taken is in levelling the axis of the telescope, which should be one of very good quality.

PROBLEM IV.

TO RIND THE TIME.

Method 1st.-From single, or absolute, altitudes of the sun, or a star whose declination is known, as also the latitude of the place.

This problem is solved by finding the value of the horary angle P, in the same " astronomical triangle" Z P S, whose elements have

[^91]already been described. In this case, the three sides, viz., the colatitude, the zenith, and polar distances, are given to find the hour angle P, which, when the sun is the objeict observed, will (as was explained in page 193) be the apparent time from apparent noon at the place of observation; and it is converted into mean time by applying to it the equation of time with its proper sign. In the case of a star, it will denote its distance in time from the meridian, which being added to its right ascension, if the observation be made to the westward of the meridian, or subtracted from the right ascension (increase by 24 hours if necessary) if to the eastward, will give the sidereal time, to be converted into mean solar time, if required.

A simple formula for finding the angle of a spherical triangle whose three sides are given is $\sin .{ }^{2} \frac{1}{2} x=\frac{\sin \left(\frac{1}{2} S-c\right)\left(\sin \frac{1}{2} S-b\right)}{\sin c . \sin b}$ where S denotes the sum of the three sides a, b, and c; of which a is assumed as the one opposite the required angle. In the present case a represents the co-altitude or zenith distance; b the co-declination, or polar distance; and c the co-latitude.

EXAMPLE.

Observed altitude of the upper limb of the sun on May 4, 1838, was $14^{\circ} 44^{\prime} 58^{\prime \prime}$ at $5^{\mathrm{h}} 47^{\mathrm{m}} 15^{\text {s }}$ by chronometer; latitude $51^{\circ} 23^{\prime} 40^{\prime \prime}$; longitude $2^{\mathrm{m}} 21^{\circ} 5^{\circ}$ east; index error of sextant $28^{\prime \prime}$.
$\left.\begin{array}{ll}\text { Thermometer . } & 61^{\circ} \\ \text { Barometer . } & \text {. } 29 \cdot 9\end{array}\right\}$ Required the error of the watch.

[^92]Method 2nd.-From equal altitudes of a star or the sun, and the interval of time between the observations.

If a star is the object observed, it is evident that half the interval of time elapsed between its returning to any observed altitude, after its culmination, will give the moment of its passing the meridian without any correction, from whence the error of the clock or chronometer is at once found. But with regard to the sun, there is a correction to be applied to this half interval, on account of his constant change of declination. From midwinter to midsummer the sun gradually approaches the North Pole, and therefore a longer period will intervene after, than before noon,-between the sun's descent to the same altitude in the evening as at the morning observation : and the reverse takes place from midsummer to midwinter. The amount of this correction depends partly upon the change of declination, proportioned to the interval of time on the day of observation; and partly upon the latitude of the place.The difference of the sun's horary angles at the morning and afternoon observations is easily calculated by the following formula of Mr. Baily's :-
$x=\mp A \delta \tan \mathrm{~L}+\mathrm{B} \delta \tan \mathrm{D}$, where
$\mathrm{T}=$ the interval of time expressed in hours;
L, the latitude of the place, minus when south;
D, the declination at noon, also minus when south;
δ, the double daily variation in declination in seconds, deduced from the noon of the preceding day to that of the following, minus when the sun is proceeding to the south; and
$x=$ the required correction in seconds, A* being minus when the time of noon is required.

The result is of course apparent noon, to which must be applied the equation of time, in order to compare a chronometer with mean noon.

If the rate only of a chronometer is required, it can be obtained by observing the transits of a star on successive days, or by equal altitudes of the same star, on the same side of the meridian, on different evenings; as a star attains the same altitude after each

[^93]interval of a sidereal day, which is $3^{\mathrm{m}} 56.91^{\text {• }}$ less than a mean solar day ; but if the refraction is not alike on the days of observation, a correction will be required.

By reading the azimuths, when the sun or a star has equal altitudes, we obtain the true meridian line, which will be again alluded to. Very frequently the afternoon altitude cannot be observed on account of intervening clouds, but the time can still be calculated from the observed single altitude, as in the last problem.

PROBLEM V.

TO DETERMINE THE LONGITUDE.

The usual method of finding the longitude at sea is by comparing the local time, found by observation, with that shown by a chronometer whose error and rate for Greenwich mean time are known. The accuracy of the result depends of course upon the chronometer maintaining a strictly equal rate under all circumstances, which cannot always be relied upon*, and various methods have been resorted to, to render the solution of this most important problem independent of such uncertain data, or at all events to afford frequent and certain checks upon its correctness. Any celestial phenomenon which should be visible at the same predicted instant of time in different parts of the globe, would of course furnish the necessary standard of comparison; and all the methods in use for determining the longitude are based upon this foundation; but they are not generally practicable at sea, with the exception of that derived from the observed angular distances between the moon and the sun, or certain stars, which are calculated for every three hours of Greenwich time, and which lunar distance is measured with a sextant, or other reflecting instrument.Artificial signals have been resorted to as a means of ascertaining the difference of longitude, with considerable success, between places not separated from each other by any very considerable distance.

In the Philosophical Transactions for 1826 is an account drawn up by Sir J. Herschel, of a series of observations made in the

[^94]summer of 1825 , for the purpose of connecting the royal observatories of Greenwich and Paris, undertaken by the Board of Longitude, in conjunction with the French Minister of War. The signals were made by the explosion of small portions of gunpowder* fired at a great elevation by means of rockets, from three stations, two on the French, and one on the English side of the Channel ; and were observed at Greenwich and Paris, as well as at two intermediate places, Legnieres, and Fairlight-Downs, near Hastings. The difference of longitude thus obtained, $9^{\prime} 21 \cdot 6^{\prime \prime}$, is supposed by Sir J. Herschel to be correct within one tenth of a second, and the observations were taken with such care, that those of the French and English observers at the intermediate stations only differed one-hundreth part of a second.

At page 198 also, of Francœur's " Géodesie," is a description of similar operations for the purpose of ascertaining the difference of longitude between Paris and Strasburg. In operations of this nature, it is only necessary that the rates of the chronometers used should be uniform for the short period of time occupied by the transmission of the signals.

Suppose A and B are two places, whose difference of longitude is required, and that they are too far distant to allow of one signal being seen from each-

C and D are taken as intermediate stations, and the first signal, made at S, is observed from A and C, and the times noted; the second signal at S^{\prime}, is observed from C and D, some fixed number of minutes after; and then that at $S^{\prime \prime}$ from D and B. Suppose these two intervals to have been five minutes each, then the difference of longitude is equal to the difference between the local time at $A+$ ten minutes, and that observed at B at the moment of the last signal.

Everything in this operation depends upon the correct observation of the times, which should be kept in sidereal intervals, or reduced

[^95]to such if observed with a chronometer regulated to mean time. When, instead of the two or three chronometers generally taken on board every ship, a number of these instruments, whose rates and errors have been previously carefully ascertained, are conveyed from one meridian to another, the comparison of the mean of the times shown by the chronometers with the local time at each place, affords the means of determining with considerable accuracy the difference of their longitudes; this mode is much practised at present on board surveying vessels *, for measuring the respective meridian distances between a number of maritime towns, ports, and other places on the sea-coast of distant countries. On shore the difference of longitude between two stations can also be determined with precision by the transmission of pocket chronometers between them; provided the errors of the box chronometers or clocks at these stations on sidereal time, and their rates, have been carefully ascertained by transit observations. Where the distance is not very considerable, the operation consists simply in comparing several pocket chronometers with the standard instrument at one of the stations, and then sending them + with the greatest care to be compared with the clock or chronometer at the other station, to be returned immediately for another comparison at the starting point; which process of transmission should be repeated several times.

When the time occupied by this operation is considerable, more than four or five days for instance, the accuracy of the result will be increased by stationing a careful assistant at a post midway between the two extreme stations with a box chronometer, with which the transmitted pocket chronometers are to be compared. Mr. Airy recommends commencing from this central position, sending the pocket chronometers (divided into two batches) simultaneously for comparison to the two principal extreme stations, and comparing them again on their return, at nearly the same time, at the intermediate point; by which modification, the time through

[^96]which reliance is placed upon the pocket chronometers is diminished one-half, and very little dependence is made to rest upon the steadiness of performance of the box chronometer at the central place of observation.

This method of obtaining the difference of longitudes of two distant places would, it is imagined, seldom be resorted to where the distance was very great, and where an intermediate station was found necessary. On the North American Boundary Survey, the second method was never tried, but the first and more simple process of direct transmission and comparison between the two stations was constantly practised with great success. One example has been selected from Major Robinson's report, calculated according to the directions drawn up by Mr. Airy, each of the three comparisons recorded being the mean of six observations.

In comparing chronometers, two persons are generally employed, one of whom watches the seconds hand of one instrument until it arrives at some convenient division, such as the commencement of a minute, or one of the ten seconds, when he gives the signal to "stop" to the other, whose attention has been meanwhile fixed upon the seconds hand of the other chrouometer. Where one person alone makes the comparison, his only plan is to register the seconds, and then the minutes and hour of one instrument, commencing to count the beats $1,2,3, \& c$., from the moment selected by him (whilst be is writing down the time observed), and then to transfer his eye to the other chronometer, continuing to count the beats until he observes its second hand opposite some marked number of seconds, when he stops; writing down first the number of beats counted, and then the seconds, minutes, and hour of the second chronometer; the number of beats is of course to be subtracted from this for the comparison of the time shown by the first instrument.

When a chronometer adjusted to mean solar time is to be compared with one going sidereal time, or with a sidereal clock, the only correct method with one observer is by the coincidence of their beats, in the manner described by Mr. Airy.

When the chronometer going mean solar time has a half-second beat, and the other instrument or the clock a second's beat, they will appear at the end of every second to beat (after some little time) almost simultaneously. Select one that appears perfectly coincident, and commence counting the beats $1,2,3, \& c$., of the clock or sidereal chronometer, writing down at the same time the second, minutes, and hour of the solar one; then turn your eye to the seconds hand of the clock or other chronometer, continuing counting till the seconds hand is at some conspicuous place, and then stop. Write down first the number of seconds you have counted; then the seconds on the clock face at which you stopped; and lastly, the minutes and hour; then the comparison will stand thus:-the time observed by the first chronometer $=$ time observed by the second (or the clock as it may be), minus the number of beats counted.

When the solar time chronometer and the sidereal have both half-second beats, the process is the same, counting every alternate
beat of the sidereal instrument. With a chronometer going mean solar time, and having a beat of five times in two seconds (a very common one, particularly in pocket chronometers), the beats will only coincide with the divisions upon the dial every alternate second, each beat being equivalent to 0.4 ; the process of comparison is, however, much the same as that already detailed, but it will be facilitated by marking distinctly with ink upon the face of the chronometer every other second, unless this has been originally so divided as to render the precaution unnecessary.

The following example shows the method of deducing the error of a chronometer going mean solar time, by comparison with a sidereal clock whose rate and error are known by transit observations.

$$
\text { R. E. Observatory, Jan. 24, } 1849 .
$$

Clock's error $44^{3} \cdot 41$ slow. Rate $0 \cdot 43$ losing.

घ. M. \quad.
2011 46.90 Sidereal time. Greenwich mean noon.
$\begin{array}{llll}0 & 0 & 0.35 & \text { Correction for longitude } 2^{\mathrm{m}} 9^{\text {s }} \\ \text { east. }\end{array}$
201146.55 Sidereal time at mean noon at place of observation.
$17130 \quad$ Clock at time of comparison.
$25846 \cdot 55$
$15940 \cdot 34$
$057 \quad 50 \cdot 49$
$\begin{array}{lll}0 & 0 & 45 \cdot 87\end{array}$
$\begin{array}{lll}0 & 0 & 0.54\end{array}$
$258 \quad 17 \cdot 24$ Mean interval from noon by clock.
1200
$\begin{array}{lll}9 & 1 & 42.76\end{array}$ Mean time a.m. by clock.
$\begin{array}{lll}9 & 0 & 5\end{array}$ Time by chronometer.
0 1 37.76 Chronometer slow (relatively).
$0044 \cdot 41$ Clock slow.
$0222 \cdot 17$ Error of chronometer, slow.
The eclipses of Jupiter's satellites are phenomena of very frequent occurrence, the precise instants of which can be calculated with
certainty for Greenwich time *; but a telescope magnifying at least forty times is required for their observation; and those of different powers are found to give such different results as to the moment of immersion or emersion, that the method is not susceptible of the accuracy it would appear to promise, and is moreover almost impracticable at sea. In determining the longitude by this method, the local time must be found by observations of one or more fixed stars, unless it is known from a chronometer whose error and rate has been previously ascertained.
The eclipses of the sun and moon also enable us to determine the longitude; the former with considerable accuracy; but their rare occurrence renders them of little or no practical benefit, and the results obtained by the eclipses of the moon are generally unsatisfactory, owing to the indistinct outline of the shadow of the earth's border.
The three methods upon which the most dependence can be placed, are-lst, by a "lunar observation," which, as before stated, possesses the great advantage of being easily taken at sea ; 2ndly, by the meridional transits of the moon, compared with those of certain stars previously agreed on, which are given in the Nautical Almanac under the head of " Moon Culminating Stars ;" and 3rdly, by occultations of the fixed stars by the moon.-The two latter methods are the most accurate of any, but the first of them requires the use of a transit instrument, and the latter a good telescope; both involve also long and intricate calculations, which will be found fully detailed in the works of Dr. Pearson, and in chapter 37 of Woodhouse's Astronomy. The methods given in the following pages considerably shorten the labour of the more accurate computations, and are the same as those in Mr. Riddle's " Navigation."

[^97]
Method lst.-By a Lunar Observation.

The observations for this method of ascertaining the longitude of any place can be taken by one individual; but as there are three elements required as data, which, if not obtained simultaneously, must be reduced to what they would have been if taken at the same moment of time, it is better, if possible, to have that number of observers.

The lunar distance, which is of the first importance, is measured by bringing the enlighteried edge of the moon and the star, or the edge of the moon and either limb of the sun, in perfect contact. The other observations required are, the altitudes of the moon, and that of the other object, whether it be the sun, a fixed star, or a planet*; and as these are only taken for the purpose of correcting the angular distance, by clearing it from the effects of parallax and refraction, they do not require the same accuracy, or an equal degree of dexterity in observing. When the observations are made consecutively by one person, the two altitudes are first taken (noticing of course the times); then the lunar distance repeated any number of times, from whence a mean of the times and distance is deduced; and afterwards the altitudes again in reverse order, which altitudes are to be reduced to the same time as that of the mean of the lunar distances.

It being of great moment to simplify and render easy the solution of this problem, which is of the most vital importance at sea, a number of celebrated practical astronomers have turned their attention to the subject, and tables for "clearing the lunar distance" are to be found in all works on Nautical Astronomy, by the use of which the operation is undoubtedly very much shortened \dagger; but as none of these methods show the steps by which this object is attained, the example given below is worked out by spherical trigonometry, and the process will be rendered perfectly easy and intelligible by the following description :-

[^98]In the accompanying figure Z represents the zenith, P the pole, M the observed place of the moon, and S that of the sun or star. The data given are MS, the measured angular distance; and ZM and ZS the two zenith distances (or co-altitudes) from whence the angle M Z S is found, the
 value of which is evidently not affected by refraction or parallax, which, acting in vertical lines, cause the true place of the moon to be elevated above its apparent place (the parallax, from her vicinity to the earth, being a greater quantity than the correction for refraction), and that of the sun or star, to be depressed below its apparent place. Let M^{\prime} and \mathbf{S}^{\prime} represent the corrected places of these bodies, and we have then $\mathrm{Z} \mathrm{M}^{\prime}$ and ZS^{\prime}-the zenith distances corrected for refraction and parallax-and the angle Z^{\prime} before found, to find the true lunar distance $M^{\prime} \mathbf{S}^{\prime}$ in the triangle $\mathrm{Z} \mathrm{M}^{\prime} \mathrm{S}^{\prime}$. The apparent time represented by the angle Z PS may be found in the triangle Z P S, having SS, P S, and Z P the co-latitude, if the exact error of the chronometer at the moment is not already known; and this time, compared with the Greenwich time at which the lunar distance is found from the Nautical Almanac to be the same, gives the difference of longitude east or west of the meridian of that place. The example below will show all the steps of the operation.

On May 4, 1838, at $10^{\text {h }} 41^{\mathrm{m}} 45^{\circ} \cdot 8$ by chronometer, the following observations were taken in latitude $51^{\circ} 23^{\prime} \cdot 40$ north, to find the longitude; the chronometer having been previously ascertained the same evening to be $3^{\mathrm{m}} 34^{\mathrm{s}}$ too fast.

Double altitude- D $74^{\circ} 42^{\prime} 35^{\prime \prime}$, taken with a sextant; index error-22".

Altitude Spica Virginis $28^{\circ} 15^{\prime} 50^{\prime \prime}$-with alt. and az. inst.; index error-28".

Distance D—*31 $25^{\prime} 55^{\prime \prime}$-with repeating circle.
Barometer standing at $29^{\prime \prime} \cdot 9$, and thermometer at 61°.
Double altitude- 744235
Index error sextant
$0 \quad 022$
2) $7442 \quad 13$
$\begin{array}{ll}37 & 21 \\ 6\end{array}$

Altitude Spica Virginis 281550
Index error 0028
Apparent altitude 281522

Z S, Apparent zenith distance | $90 \quad 0 \quad 0$ |
| ---: |
| 614438 |

Observed distance *- D 312555
Moon's semidiam.—10 $0^{\mathrm{h}} 7^{\mathrm{m}}-14^{\prime} 45^{\prime \prime} \cdot 31$
Augmentation for $37^{\circ} 6^{\prime}$. 8. 49 \}

M S, Apparent lunar distance \quad. \quad	31	11	$1 / 2$

lst-Then in the triangle Z MS we have the three sides to find the angle MZS.

Angle M Z S 354650
Then to correct the zenith distances for refraction and parallax :

Then in the triangle $\mathrm{Z} \mathrm{M}^{\prime} \mathrm{S}^{\prime}$, we have

$$
\mathrm{ZM}^{\prime}=521154
$$

$\mathrm{ZS}^{\prime}=614623$ to find $\mathrm{M}^{\prime} \mathrm{S}^{\prime}$ the corrected lunar distance.
and angle $\mathrm{Z}=354650$)

$$
\begin{aligned}
\text { Formula, } \tan a^{\prime} & =\cos Z \times \tan Z M^{\prime} \\
a^{\prime \prime} & =\mathrm{Z} S^{\prime}-a^{\prime} \\
\cos M^{\prime} S^{\prime} & =\operatorname{cosine} Z M^{\prime} \times \frac{\cos a^{\prime \prime}}{\cos a^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\text { cos } & 35 & 46 & 50 \\
9 \cdot 9091613
\end{array} \\
& \text { tan } 521154 \quad 0.1102916 \\
& a^{\prime}=461658 \quad 0.0194529 \\
& Z_{S^{\prime}}=614623 \\
& \left(\mathrm{ZS}^{\prime}-a^{\prime}\right)=\frac{152925}{\circ, \ldots}=a^{\prime \prime} \\
& \text { cos } \quad 521154 \quad 9.7874110 \\
& \cos \boldsymbol{a}^{\prime \prime}=152925 \quad 9.9839310 \\
& \cos a^{\prime}=461658 \text { ar. com. } 0 \cdot 1604593 \\
& \mathbf{M}^{\prime} \mathbf{S}^{\prime}=311634 \quad \overline{9 \cdot 9318013}
\end{aligned}
$$

The corrected lunar distance.
By the Nautical Almanac, it appears that the Greenwich mean time answering to this distance, must be between 9 p.m. and mid-night-the difference of distance answering to this interval of 3 hours, being $1^{\circ} 28^{\prime} 52^{\prime \prime}$ Prop. log. 3065^{*}

Lunar dist. at 9 p.m. Greenwich $32 \quad 355$
Corrected distance found above 311634
$4721 \quad$ Prop. log. 5800

Interval of time past $9 \quad$\begin{tabular}{ccc}

135	54	
9	0	0

\hline
\end{tabular}

Greenwich mean time . . 103554
Mean time at place of observation $1038 \quad 11 \cdot 8$

Longitude east	.	.	02178
Or in space .	.	.	03427

The difference between the prop. log. at 9 and midnight being 0 , the correction of 2 nd differences is nothing.

Mr. Baily's formula for a lunar observation for longitude is as follows :x the true lunar distance required,

[^99]$\left.\begin{array}{l}\mathrm{H} \text { the apparent } \\ \text { and } \mathrm{H}^{\prime} \text { the true }\end{array}\right\}$ altitude of the moon, $\left.\begin{array}{l}h \text { apparent } \\ h^{\prime} \text { true }\end{array}\right\}$ altitudes of sun or star, and Δ the apparent distance.

```
Make \(\beta=\frac{1}{2}(\Delta+H+h)\)
    \(\left.\left.\{(\cos \beta \cos \beta)-\Delta) \frac{\cos \mathrm{H}^{\prime} \cos h^{\prime}}{\cos \mathrm{H} \cos h}\right)\right\}^{\frac{1}{2}}\)
    \(\sin a=] \quad \cos \frac{1}{2}\left(\mathrm{H}^{\prime}+h^{\prime}\right)\)
then \(\sin \frac{1}{d} x=\cos \frac{1}{2}\left(\mathrm{H}^{\prime}+h\right) \cos a\).
```

The following example will also show the method of working out a lunar observation, by Dr. Young's formula, all the terms of which are cosines :-

Given apparent altitude Θ S K =			-	-	7	' 48
		D $\mathrm{MH}=$.	-	35	$45 \quad 4$
	\bigcirc	D $\mathrm{MS}=$	-	-	95	5053
	True altitude	$\theta \mathbf{S}^{\prime} \mathbf{K}$	-	-	7	4131
		D $\mathrm{M}^{\prime} \mathrm{H}$	-	-	36	2754
		-	-	"		
S Z $=$	- -	82	11	59		
M Z	- -	54	14	56		
$S^{\prime} \mathbf{Z}$	- .	82	18	29		
M'Z	- •	. 53	32	6		

Required M'S' the true distance.
By Dr. Young's formula,
$\operatorname{Cos} \mathrm{M}^{\prime} \mathrm{S}^{\prime}=\left\{\frac{2 \cos \frac{1}{8}(\mathrm{MH}+\mathrm{BK}+\mathrm{MS}) \cos \frac{1}{\frac{1}{2}(\mathrm{MH}+\mathrm{SK}-\mathrm{MS}) \cos \mathrm{M}^{\prime} \mathrm{H} \cos \mathrm{B}^{\prime} \mathrm{K}}}{\cos \mathrm{M} H \cos \mathrm{SK}}\right\}$ $-\cos \left(M^{\prime} H+B^{\prime} K\right)$.

MS $=955053$
MH $=35454$ ar. comp. cos 0.090678
SK $=748 \quad 1$ ar. comp. $\cos 0.004037$
1392358

the true lunar distance.
The same example, by Mr. Riddle's first method, which will be found in his "Navigation," gives $95^{\circ} 44^{\prime} 29^{\prime \prime}$ for the corrected lunar distance.

By Mrs. Taylor's method, which requires the use of her "Tables," the true distance is obtained as follows :-

Table 1	.	01.3873	.	. 7533	
Table 2	.	-0.5077	.	-	$\frac{-1.4997}{-2.2530}$

Table $3\left\{\begin{array}{lll}\cdot & \cdot & -7^{\prime} 25^{\prime \prime} \\ \cdot & -315\end{array}\right.$
" 4 . . 422
" $5 \quad . \quad . \quad-0 \quad 2$
Total corrections . - 620
Appt. distance . 955053
True distance . 954433
The apparent altitudes and distance are first obtained from those observed, by correcting them for semidiameter and dip if necessary. Then in Table 1 find the log of the corrections for the altitudes on account of the moon's parallax.

Trom Table 2 take the logs of the effect of the moon's horizontal parallax upon the distance.

Table 3 gives the minutes and seconds answering to these logarithms.

From Table 4, find the effect of the refractions of both objects on the observed distance.

And from Table 5, if the sun is one of the objects observed, the effect of his parallax.

These corrections, applied, with their proper signs, to the apparent distance, give the true distance as above. Mr. Airy makes the following remarks upon the effect of errors of observation in taking lunar distances and lunar transits. A certain error of time produces that same error in the deduced longitude; and an error in the measure of one second produces about two seconds of time in the longitude.

An error of one second of time in a lunar transit produces about 30 seconds error in the longitude.

An error of one second of time in a lunar zenith distance will produce at least 30 seconds of time error in longitude-sometimes considerably more. An error of one second in zenith distances produces at least two seconds of time in longitude. An error of one second of time in an occultation produces one second of time in the longitude.

The same with eclipses of Jupiter's satellites.
Instead of measuring the distance between the moon and a star, for a comparison with the time at which the same distance is obtained by calculation for the meridian of Greenwich; altitudes may be taken simultaneously of the moon and a star, from the latter of which, its right ascension and declination being accurately known, the right ascension of the meridian can be computed. This right ascension applied to the moon's distance from the meridian (the angle P in the astronomical triangle) gives the right ascension of the moon, to be compared with the time at Greenwich at which it is identical, for the difference of longitudes.

Another method, applicable particularly to low latitudes *, is to select, when the moon is on or near the prime vertical, any star whose right ascension and declination are known; it being at the time within 8° or 10° of the zenith.

[^100]Take the distance between this star and the moon; also the moon's altitude, and apply the moon's correction in altitude with a contrary sign as the correction in distance; then, with the corrected distance as a base, and the co-declinations as containing sides, the difference of right ascension, and consequently the moon's right ascension, and Greenwich time, are found.
If a star answering to the above conditions is not available, select any star having the same or nearly the same azimuth as the moon, and not less than 30° or 40° distant; the sum or difference of the corrections in altitude would then evidently be the correction in distance. If the star happened to be one of those given in the lunar distance, the Greenwich time is at once found; if not, with the corrected distance as a base, the problem is worked out as before.
The objection to both these methods is, that the moon's declination is required to be known accurately as an important part of the data, to compute which, it is necessary to know the longitude correctly (the very thing sought), except in cases where the moon's declination on either side of the equinoctial is nearly a maximum, and consequently for some time comparatively stationary. Under these circumstances a good result may be expected from the last method when the moon is on, or nearly on, the prime vertical.

BY THE METHOD OF MOON CULMINATING STARE.

The proper motion of the moon causing a difference in the interval of time between her transit, and that of any star, over different meridians, affords another method of determining the longitude *. The times of transit (or apparent right ascension) of the moon's enlightened edge, and that of certain stars varying but little from her in declination, are calculated for Greenwich mean time, and given among the last tables in the Nautical Almanac. The transits of the moon's limb, and of one or more of these stars, are observed at the place whose longitude is required, and from the comparison of the differences of the intervals of time, results a most

[^101]easy and accurate determination of the difference of meridians *; of which the following example is sufficiently explanatory.

EXAMPLR.

At Chatham, March 9, 1838, the transit of a Leonis was observed by chronometer at $10^{\text {b }} 52^{\mathrm{m}} 46^{\circ}$, and of the moon's bright limb, at $10^{\text {h }} 20^{\mathrm{m}} 7 \cdot$; the gaining rate of chronometer being $l^{\bullet \cdot} 5$.

Eastern Meridian Chatham-observed transits.

Western Meridian Greenvoich-apparent right ascensions.

H. M. s.
a Leonis $95946 \cdot 18$
D| $\frac{102716.76}{02730.58}$
Observed transits . . . 02725.96
Difference of sidereal time between the intervals $\quad \begin{array}{llll}0 & 0 & 4.62\end{array}$
Due to change in time of moon's semidiameter passing the meridian $+0 \quad 0 \quad 01$

Difference in D 's right ascension . . . $\begin{array}{lll}0 & 0 & 4.63\end{array}$
The variation of D 's right ascension in 1 hour of terrestrial longitude is, by the Nautical Almanac, 112.77 seconds. Therefore as $112 \cdot 77^{\mathrm{s}}: 1^{\mathrm{h}}:: 4 \cdot 63^{\mathrm{s}}: 147 \cdot 80$, $=2^{\prime} 27^{\prime \prime} \cdot 8$, the difference of longitude.

But when the difference of longitude is considerable, instead of using the figures given in the list of moon-culminating stars for the

[^102]variation of the moon's right ascension in one hour of longitude, the right ascension of her centre at the time of observation should be found, by adding to, or subtracting from the right ascension of her bright limb at the time of Greenwich transit, the observed change of interval, and the sidereal time in which her semidiameter passes the meridian. The Greenwich mean time corresponding to such right ascension being then taken from the Nautical Almanac, and converted into sidereal time, will give, by its difference from the observed right ascension, the difference of longitude required. For instance, in the above example :-

D Right ascension at Greenwich	10	27	1676
Sidereal time of semidiameter passing meridian of place		1	$2 \cdot 26$
D Right ascension at Greenwich transit	10	28	19.02
Observed difference	0	0	$4 \cdot 62$
Right ascension at the time, and sidereal time at the place, of observation			
$\left.\begin{array}{l}\text { Greenwich mean time correspond- } \\ \text { ing to the above right ascension. }\end{array}\right\} \begin{array}{llc}\text { ․ } & \text { y. } & \text { s. } \\ \text { Page 7, Nautical Almanac. } & 17 & 17 \\ \text { Pa } & & \end{array}$			
Or sidereal time at Greenwich	10	25	$46 \cdot 5$
Difference of longitude	0	2	$27 \cdot 9$

BY OCCULTATIONS OF PIXED STARS BY THE MOON.

The rigidly-accurate mode of finding the longitude from the occultation of a fixed star by the moon, involves a long and intricate calculation, an example of which will be found in the 37th chapter of Woodhouse's "Astronomy :" and the different methods of calculating occultations, are analyzed at length by Dr. Pearson in his " Practical Astronomy," commencing at page 600, v. ii.

The following rule, however, taken from Riddle's "Navigation," will give the longitude very nearly, without entering into so long a computation:-

Find the Greenwich mean time from knowing the local time
and the approximate longitude, and for that time take, with the greatest exactness, from the Nautical Almanac the sun's right ascension, and the moon's polar distance, semidiameter, and parallax, applying all corrections.

To the apparent time, add the sun's right ascension, and the difference between this sum, and the star's right ascension, will be the meridian distance of the latter. Call this distance \mathbf{P}; the star's polar distance p; its right ascension R; the reduced co-latitude l; the moon's polar distance m; her reduced horizontal parallax H ; and her semidiameter s .

Then add together sec $\frac{l+p}{2}, \cos \frac{l \sim p}{2}$, and $\cot \frac{P}{2}$, and the sum, rejecting twenty, will be the tangent of arc a, of the same affection as $\frac{l+p}{2}$.

Add together $\operatorname{cosec} \frac{l+p}{2}, \sin \frac{l \sim}{2}-\underline{p}$, and $\cot \frac{p}{2}$, and the sum, rejecting twenty, will be the tan of arc b (always acute). When l is greater than $p, a+b=\operatorname{arc} c$; and when l is less than p, $a-b=\operatorname{arc} c$.

Add together $\tan c, \operatorname{cosec} l, \operatorname{cosec} P$, and prop. $\log H$, and the sum, rejecting the tens, is prop. \log of arc d. When arc c is obtuse, $p+d=\operatorname{arc} e ;$ and when c is acute, $p-d=\operatorname{arc} e$.

Add together cosec l, cosec P, prop. $\log H$; and with the sum S, and p, take the correction from the subjoined table, and applying it with its proper sign to e, call the sum or the remainder e^{\prime}. The difference of m and e^{\prime} is arc f.

To S add $\sin e^{\prime}$, and the sum, rejecting the tens, is the prop. log of arc g.

To the prop. $\log s$ of $s+f$, and $s-f$, add twice the sine of arc e, and half the sum, rejecting the tens, is the prop. log. of arc h.

Then the moon's right ascension $=\mathrm{R} \pm g \pm h$, where g is additive west of the meridian, and subtractive east; and h is additive at an emersion, and subtractive at an immersion.

Having found the moon's right ascension, the corresponding Greenwich time is to be found from the Nautical Almanac, the comparison of which with the local time gives the longitude of the place of observation.

TABLE FOR CORRECTION OF e.

\boldsymbol{S}	Star's Polar Distance p.						
	60°	65° +	70 +	75° +	80 +	85° +	${ }^{90}$
	"	"	"	"	"	H	"
. 50	16.5	13.2	$10 \cdot 3$	7.5	$5 \cdot 0$	$2 \cdot 5$	$\cdot 0$
$\cdot 55$	18.0	10.5	8.2	6.0	$4 \cdot 0$	2.0	- 0
-60	$10 \cdot 3$	$8 \cdot 3$	6.5	$4 \cdot 7$	$3 \cdot 2$	$1 \cdot 5$	$\cdot 0$
-65	$8 \cdot 2$	$6 \cdot 6$	$5 \cdot 1$	$3 \cdot 8$	$2 \cdot 5$	$1 \cdot 2$	$\cdot 0$
$\cdot 70$	6.5	5.2	$4 \cdot 1$	$3 \cdot 0$	$2 \cdot 0$	1.0	0
75	$5 \cdot 1$	$4 \cdot 2$	$3 \cdot 2$	$2 \cdot 4$	1.5	$\cdot 8$	- 0
. 80	$4 \cdot 1$	3.2	$2 \cdot 6$	1.9	$1 \cdot 2$	-6	- 0
. 85	$8 \cdot 2$	$2 \cdot 6$	2.0	1.0	$\cdot 9$	$\cdot 5$	-0
.90	$2 \cdot 6$	$2 \cdot 1$	$1 \cdot 6$	$1 \cdot 1$	$\cdot 8$	$\cdot 4$	- 0
. 95	$2 \cdot 1$	1.7	$1 \cdot 3$	$1 \cdot 0$	$\cdot 6$	-3	- 0
$1 \cdot 00$	$1 \cdot 6$	1.3	$1 \cdot 0$	$\cdot 7$	$\cdot 4$	$\cdot 2$	$\cdot 0$
$1 \cdot 10$	1.0	-9	$\cdot 6$	$\cdot 5$	- 3	$\cdot 1$	- 0
$1 \cdot 20$	$\cdot 6$	$\cdot 5$	$\cdot 4$	$\cdot 3$	$\cdot 2$	$\cdot 1$	- 0
$1 \cdot 30$	-4	$\cdot 3$	$\cdot 3$	$\cdot 2$	$\cdot 1$	$\cdot 0$	$\cdot 0$
1.50	$\cdot 2$	$\cdot 1$	-1	$\cdot 0$	$\cdot 0$	$\cdot 0$	$\cdot 0$
1-80	$\cdot 0$						
	$\overline{120}$	$\overline{115}$	$\overline{110}$	$\overline{105}$	$\overline{100}$	${ }^{95}{ }^{\circ}$	$\overline{90}$
	Star's Polar Distance p.						

PROBLEM VI.

TO DETERMINE THE DIRECTION OF A MERIDIAN LINE* AND THE VARIATION OF THE COMPASS.

In the spherical triangle ZPS, already alluded to as the astronomical triangle; and in which the co-latitude ZP , and the time represented by the angle P, were ascertained by the method of absolute altitudes in pages 191 and 195; the azimuth of any celestial body \mathbf{S} is measured by the angle \mathbf{Z}, which is found from knowing either the time, or

[^103]the latitude, in addition to the observed altitude. This calculated azimuth compared with the magnetic bearing of the object observed at the same instant, and determined with reference to some well-defined terrestrial mark, affords the means of laying down a meridian line, and gives the variation of the compass.

Another mode is by calculating the amplitude of the sun at his rising or setting for any day in any latitude, and comparing it with his observed bearing when on the horizon, or rather when he is 34 minutes, or about his own diameter, above it, as his disc is elevated that amount above its true place by refraction.

In the accompanying figure HO is the horizon, P the pole, EQ the equator, PAC the six o'clock hour circle, PEC the meridian, Z the zenith and $d d$ or $d^{\prime} d^{\prime}$ the circle of declination of f_{B} the sun, either north or south of the equator, and supposed to be drawn through his place at the time of sunrise, which is approximately known.
S or S^{\prime} then, the intersection of this declination circle with the horizon, is the position of the sun at rising; in the first case before arriving at the 6 o'clock hour circle, and in the second after having passed it.

In the triangles $A S t$ or $A S^{\prime} t^{\prime}$ then, $t S$ or $t^{\prime} \mathbf{S}^{\prime}$ is the sun's declination, and the angle $S A t, S^{\prime} A t^{\prime}$ the co-latitude of the place; from whence we obtain AS or AS', the amplitude, and also At or At', the angular distance before or after 6 o'clock for the time of sunrise.-In the same way can be obtained the sun's amplitude at sunset; as also the time, allowing for the change in declination.-If the meridian is to be marked on the ground, it is necessary, as before stated, to observe some object with reference to the magnetic bearing.

A transit instrument * placed in the plane of the meridian, of course affords the means of marking out at once a meridian line on the ground; the following short description, abridged from Dr. Pearson's " Practical Astronomy," explains the method of adjusting a portable transit approximately in this plane, and of verifying its position when so placed.

1st. The adjustment of the level, and of the axis of the telescope.-These two adjustments may be carried on at the same time; as when the level is made horizontal and parallel to the axis, the axis must be horizontal also.-Apply the level to its proper place on the pivots of the axis, and bring it horizontal by the footscrews of the instrument; reverse the level, and mark the difference as shown on the scale attached to it-half this difference must be corrected by the screw of the level, and half by the footscrews, which operation will probably want repeating-if by previous observation, the level has been ascertained to be correct, the foot-screws alone must be used in the correction, and if on reversing the instrument in its Ys, the level is still correct, the pivots of the axis are of equal size; if not, the instrument should be returned to its maker as imperfect.

2nd. The next object will be to place the spider lines truly vertical, and to determine the equatorial value of their intervals.

Suspend a thick white plumb-line on a dark ground, at a distance from the telescope; then the middle wire may be made to coincide with it to insure its verticality, and if a motion in altitude be given to the telescope, and the coincidence continues unaltered by change of elevation, the axis has been truly levelled.

The equatorial value of the intervals between the wires, may be determined by counting the time in seconds and parts occupied by the passage of an equatorial star over all the intervals, taken separately and collectively, by several repetitions on or near the metidian. If the star observed has any declination, the value of

[^104]an interval obtained from its passage may be reduced to its equatorial value by multiplying the seconds counted, by the cosine of the star's declination; before this method can be used, the telescope must have been placed nearly on the meridian.

3rd. Collimation in azimuth.-When the preceding adjustments have been made, the telescope should be directed to a distant object, the middle spider line brought to bisect it, and the axis then turned end for end. If, after this reversion, the same point be again bisected by the wire, it is a proof that a line passing from the middle spider line to the optical centre of the object glass is at right angles to the axis of the telescope's motion. But if, after this reversion of the axis, the visible mark be found on one side of the middle line, half the error thus found must be corrected by the screw which moves the Ys in azimuth, and the other half by the screw for adjusting the wires; several reversions must be made to ensure accuracy.-The verification of this adjustment may be proved by the passage of the pole star;-note the time at the preceding and at the middle wire, then reverse the axis, and note the passage over what was the preceding, but is now the following wire; half the difference of the intervals before and after reversion, will show how much the position of the centre wire has been altered by reversion.

4th. Collimation in altitude.-When the telescope is directed to the pole star at the time of its crossing the meridian, or to any well-defined distant point by daylight, read the vernier of the altitude circle, while the bubble of the level is at zero. The axis of the telescope must then be reversed, and the horizontal line again brought to bisect the star; and when the bubble is made to stand at zero, as before, the reading of the vernier must be again noted; half the sum of these readings will be the true altitude; and half the difference, the error of collimation in altitude. This error may consist of two parts: the spider line may be out of the optical centre of the field of view; and the level (supposing it previously adjusted to reverse properly in position) may not be in its true position as regards the zero of the circle's divisions; half therefore of the error arising from the half difference of altitudes must be adjusted by the screws carrying the spider lines, and the other half by the screw that alters the level.

5th. The last and most difficult of all the adjustments, is that by which the instrument is placed in the plane of the meridian of the place of observation. There are many modes of accomplishing this, both by direct and indirect means; but the most convenient and most generally practised are those in which a circumpolar star is employed; or in which two circumpolar stars, differing little in declination, but nearly twelve hours in right ascension; or in which two stars, differing considerably in altitude, and but little in right ascension, are successively observed; but in whatever way the adjustment may be made, the clock that gives the times of transit must have its rate previously well determined.

The approximate position of the instrument may be ascertained by calculating the solar time of the pole star's passage over the meridian for any given day; and then the telescope levelled and pointed at it, at the computed time, will require but little adjustment. Subsequent observations of circumpolar, or of high and low stars, will gradually rectify the position, provided all the adjustments previously directed, continue unaltered for a sufficient length of time; and a meridian mark, capable of adjustment, may be placed at a convenient distance north or south, until their places are definitely fixed by some of the following methods. At $95 \cdot 49$ yards from the object end of the telescope, one inch will subtend l^{\prime} or $60^{\prime \prime}$, and a scale may be made accordingly, varying of course inversely as the distances; so that when the transit is found to be any number of seconds, say thirty, too much to the east or west, a corresponding distance on the scale shows how much the instrument is to be moved in azimuth, by the proper screws, to effect the correction required.

Method 1st.-By a circumpolar star.
$a=\frac{t-t^{\prime}-12^{\mathrm{h}}}{2 \cos \mathrm{~L}} \operatorname{cotan} \delta$
Where $a=$ azimuthal deviation in seconds at the horizon,
$t=$ the time at upper transit,
$t^{\prime}=$ at lower passage,
$\mathrm{L}=$ the latitude,
$\delta=$ the declination :
by multiplying by $15, a$ is converted into space if required.

If the weestern semicircle is passed through in less time than the eastern, the object end of the telescope points to the west of the true meridian. The clock must be a good one for this method, as it supposes no change of rate for twelve hours.

Method 2nd.-By a pair of circumpolar stars.

$$
a=\frac{\left(t-t^{\prime}-12^{\mathrm{a}}\right)-\left(\mathrm{T}-\mathrm{T}^{\prime}-12^{\mathrm{b}}\right) \sin \Delta \sin \Delta^{\prime}}{c \cos \mathrm{~L}-\sin \left(\Delta^{\prime}-\Delta\right)}
$$

where Δ and $\Delta^{\prime},=$ the star's polar distances, $L=$ the latitude, t and t the times of the first star's upper and lower passages, T and T^{\prime} the times of the contrary passages of the second star, following the other at an interval of nearly 12 hours in right ascension; or this formula, omitting the 12 hours,

$$
a=\frac{(t-r)-\left(t^{\prime}-r^{\prime}\right) \sin \Delta \sin \Delta^{\prime}}{2 \cos L-\sin \left(\Delta^{\prime}-\Delta\right)}
$$

when $\left(t-t-12^{b}\right)$ is a greater interval than $\left(r-r^{\prime}-12^{b}\right)$ the horizontal deviation a will be towards the east, and vice versa; or when $\left(t^{\prime}-r^{\prime}\right)$ is greater than $(t-r)$ the deviation is also to the east.

Method 3rd.-By high and low stars.

$$
a=\frac{\left(\mathrm{D}-\mathrm{D}^{\prime}\right) \cos \delta^{2} \cos \delta^{\gamma}}{\cos \mathrm{L} \sin \left(\delta^{2}-\delta^{2}\right)}
$$

Where $\mathrm{D}=(t-t)$ the difference of the observed times of passage, and $D^{\prime}=\left(R a-R a^{\prime}\right)$ the difference of the apparent right ascension of the two given stars, δ^{\prime} the declination of the higher star, and δ that of the lower. The stars for this method ought to be removed from each other at least 40° in declination. When ($D-D^{\prime}$) is positive, the horizontal deviation is to the east of the south point in northern latitudes; and the contrary when negative. Tables are formed to facilitate the computation of the above formulæ. The times are all supposed to be sidereal; if, therefore, solar time is used in the observations, the acceleration must be added.

The following example is given of the last method, in which, if the difference of the times of the observed passages be exactly equal to the difference of the computed right ascensions of the two stars, the instrument will necessarily be already in the plane of the meridian.

On June 20, 1838, in latitude $51^{\circ} 23^{\prime} 40^{\prime \prime}$, the transits of a Corona Borealis, and of Antares, were observed.

YORM FOR RECORDING OBSERVATIONS MADE WITH A PORTABLE transit.
(Date, Place, and Name of Observer.)

Approximate Solar Time.	$\begin{array}{cc}\text { H. } \\ \mathbf{9} & \mathbf{4 7}\end{array}$	$\begin{array}{cc}\text { 日. } \\ 10 & \mathbf{x} \\ \mathbf{4 0}\end{array}$	$\begin{array}{ll} \text { H. } \\ 10 \end{array}$
Object.	12 Canum Venaticorum.	n Majoris.	- Bootis.
1at Wire		$\begin{array}{lll} \text { H. } & \text { M. } \\ 13 & 55 & 6.5 \end{array}$	$\begin{array}{ccc} \text { H. } & \text { M. } & \text { s. } \\ 14 & 1 & 26.0 \end{array}$
2nd "	317.0	5549.5	Loat
3rd "	351.5	5631.0	223.0
4th"	427.0		258.0
5th ",	51.0	5756.0	321.0
Sum	1918.0	22523.0	10
Mean of Wires Correction for wires lost		$\begin{array}{lll} 13 & 45 & 4 \cdot 6 \\ 11 & 26 \cdot 70 \end{array}$	$\begin{array}{llc} 14 & 2 & 0.6 \\ & 0 & 22.94 \end{array}$
True Transit on Instruments	$13 \quad 351.6$	$13 \quad 5631.30$	$14 \quad 223 \cdot 54$
$\text { Azimuthal Error }+20 \times\left\{\begin{array}{l} +0.009 \\ -0.008 \\ +0.031 \end{array}\right.$	+ 0.18	0.16	+ 0.62
True Transit over Meridian	$13 \quad 3 \begin{array}{ll}13 & 78\end{array}$	$13 \quad 5631 \cdot 14$	
Star's Right Ascension	124848.97	$13 \quad 41 \quad 28 \cdot 49$	$134721 \cdot 19$
Rrror of Chronometer	$15 \quad 2.81$	$15 \quad 2 \cdot 65$	$15 \quad 2.97$

The above is one of the sets of observations made by Major Robinson at St. Helen's Island, Upper Canada, in 1845. Reference was always made to the particular transit and chronometer used; stating also if the error of collimation had been determined, and the transit levelled immediately before the observation, and whether the east or west end of the axis was illuminated.

In the transit books used on this occasion, made of four or five quires of letter paper bound up in a strong cover, the right-hand page was printed in the above form, leaving the other blank for recording levels, calculating the azimuthal errors, \&c., \&c.

The form for registering transit observations in a permanent Ob servatory, is of course different from the above : that at present in use at the Royal Engineer Observatory at Chatham, taken from the "Corps Papers,"-is given as an example.

TABLE I.

FOR CONVERTING SIDEREAL INTO MEAN SOLAR TIME.

Hours.		Minutes.				Seconds.			
1	$\begin{array}{cc} \mathrm{M} . & \mathrm{s} . \\ 0 & 9.830 \end{array}$	1	$\begin{gathered} \text { s. } \\ 0 \cdot 164 \end{gathered}$	81	$\begin{gathered} \mathrm{s} \\ 5 \cdot 079 \end{gathered}$	1	$\stackrel{8}{8.003}$	31	$\underset{0.085}{\text { s. }}$
2	$\begin{array}{ll}0 & 19.659\end{array}$	2	0.328	32	$5 \cdot 242$	2	0.005	32	0.087
3	$\begin{array}{ll}0 & 29.489\end{array}$	8	0.491	33	$5 \cdot 406$	3	0.008	33	0.090
4	$\begin{array}{ll}0 & 39.318\end{array}$	4	0.655	34	5.570	4	0.011	34	0.098
5	0 ($0 \cdot 148$	5	0.819	35	5.784	5	0.014	35	0.096
6	$\begin{array}{ll}0 & 58.977\end{array}$	6	0.983	36	5.898	6	0.016	86	0.098
7	188.807	7	1-147	37	6.062	7	0.019	87	0.101
8	$1 \quad 18.636$	8	1.311	38	6.225	8	0.022	38	0.104
9	$1 \begin{array}{ll}1 & 28.466\end{array}$	9	1.474	39	6.389	9	0.025	39	0.106
10	$1 \quad 38.296$	10	1.638	40	6.553	10	0.027	40	0.109
11	$\begin{array}{ll}1 & 48.125\end{array}$	11.	1.802	41	6.717	11	0.030	41	0.112
12	$1 \begin{array}{ll}1 & 57.955\end{array}$	12	1.966	42	6.881	12	0.033	42	0.115
18	276784	13	$2 \cdot 130$	43	$7 \cdot 044$	18	0.036	43	0.118
14	$2 \quad 17 \cdot 614$	14	2-294	44	7.208	14	0.038	44	0.120
15	27.448	15	2.457	45	7.872	15	0.041	45	$0 \cdot 123$
16	$2 \quad 37 \cdot 273$	16	2.621	46	7.536	16	0.044	46	0.126
17	$\begin{array}{ll}2 & 47 \cdot 103\end{array}$	17	2.785	47	7.700	17	0.047	47	0.128
18	$2 \quad 56.932$	18	2.949	48	7.864	18	0.049	48	0.181
19	381762	19	$3 \cdot 113$	49	8.027	18	0.052	49	0.134
20	3 16.591	20	3.277	50	8.191	20	0.055	50	0.137
21	3 26.421	21	3.440	51	8.855	21	0.057	51	$0 \cdot 140$
22	$3 \quad 36.250$	22	3.604	52	8.519	22	0.060	52	0.142
23	$3 \quad 46.080$	28	$8 \cdot 768$	53	8.688	23	0.063	53	0.145
24	$3 \quad 55.909$	24	3.932	54	8.847	24	0.066	54	$0 \cdot 148$
		25	4.096	55	9.010	25	0.068	55	0.150
		26	4.259	56	$9 \cdot 174$	26	0.071	56	0.153
		27	4.423	57	9.338	27	0.074	57	0.156
		28	4.587	58	9.502	28	0.076	58	$0 \cdot 159$
		29	4.751	59	9.666	29	0.079	59	$0 \cdot 161$
		30	4.915	60	9.830	30	0.082	60	$0 \cdot 164$

The quantities opposite the different numbers of hours, minutes, and seconds, are to be subtracted, to obtain the equivalent interval of mean solar time for any period.

TABLE II.

FOR CONVERTING MEAN SOLAR INTO SIDEREAL TIME.

Hours.			Minutes.				Seconds.			
1	${ }_{0}^{\mathbf{M}}$	$\begin{gathered} 8 . \\ 9.856 \end{gathered}$	1	$0 \cdot 164$	31	$\begin{gathered} 8 \\ 5 \cdot 092 \end{gathered}$	1	8. 0.003	31	$\xrightarrow{\text { 8. }}$
2	0	19•713	2	0.329	82	$5 \cdot 257$	2	0.005	32	0.087
3	0	$29 \cdot 569$	3	0.493	33	$5 \cdot 421$	8	0.008	33	0.090
4	0	$39 \cdot 426$	4	0.657	34	$5 \cdot 585$	4	0.011	34	0.098
5	0	$49 \cdot 282$	5	0.821	35	5.750	5	0.014	35	0.096
6	0	59-139	6	0.986	36	5.914	6	0.016	36	0.098
7	1	8.995	7	$1 \cdot 150$	37	6.078	7	0.019	37	$0 \cdot 101$
8	1	18.852	8	1.314	38	6.242	8	0.022	38	$0 \cdot 104$
9	1	$28 \cdot 708$	9	$1 \cdot 478$	39	6.407	9	0.025	39	$0 \cdot 106$
10	1	$38 \cdot 565$	10	1.643	40	$6 \cdot 571$	10	0.027	40	0.109
11	1	$48 \cdot 421$	11	1.807	41	6.785	11	0.030	41	0.112
12	1	58-278	12	1.971	42	6.900	12	0.033	42	0.115
13	2	$8 \cdot 134$	13	$2 \cdot 136$	43	$7 \cdot 064$	13	0.036	43	0.118
14	2	17.991	14	2.300	44	7.228	14	0.038	44	$0 \cdot 120$
15	2	$27 \cdot 847$	15	$2 \cdot 464$	45	7.392	15	0.041	45	$0 \cdot 123$
16	2	37-704	16	2.628	46	$7 \cdot 557$	16	0.044	46	$0 \cdot 126$
17	2	47.560	17	2.793	47	7.721	17	0.047	47	$0 \cdot 128$
18	2	57.416	18	2.957	48	7.885	18	$0 \cdot 049$	48	0.131
19	3	$7 \cdot 273$	19	$3 \cdot 121$	49	8.050	19	0.052	49	0.134
20	3	17-129	20	3.285	50	8.214	20	0.055	50	0.137
21	3	26.986	21	3.450	51	8.378	21	0.057	51	$0 \cdot 140$
22	3	36.842	22	$3 \cdot 614$	52	$8 \cdot 542$	22	0.060	52	0.142
28	3	$46 \cdot 699$	23	3.778	53	8.707	23	0.063	53	$0 \cdot 145$
24	3	56.555	24	3.943	54	8.871	24	0.066	54	$0 \cdot 148$
			25	$4 \cdot 107$	55	$9 \cdot 035$	25	0.068	65	$0 \cdot 150$
			26	4.271	56	9-199	26	0.071	56	$0 \cdot 153$
			27	$4 \cdot 436$	57	9.364	27	0.074	57	0.156
			28	4.600	58	9.528	28	0.076	58	$0 \cdot 159$
			29	$4 \cdot 764$	59	9.692	29	0.079	59	$0 \cdot 161$
			30	4.928	60	$9 \cdot 856$	30	0.082	60	0.164

The quantities opposite the different numbers of hours, minutes, and seconds, are to be added, to obtain the equivalent interval of sidereal time for any period. -Vide Table of Equivalents, page 489 of.the Nautical Almanac. This table, and the preceding, are calculated from the ratio of a sidereal to a mean solar day-twenty-four hours of mean time being equivalent to $24^{\mathrm{n}} 3^{\mathrm{m}} 56^{\mathrm{n}} \cdot 5554$ sidereal time.

TABLE III.
POR CONVERTING BPACE INTO TIME, AND VICE VERSA.

TABLE IV.

Barometer, 30 in . + when above - when below.			\} Table of Refractions.						$\left\{\begin{array}{l} \text { Thermometer, } 50^{\circ} . \\ \text { - when above } \\ + \text { when below. } \end{array}\right.$		
App. Alt.	$\begin{gathered} \text { Refr. } \\ \text { B. } 30 \\ \text { Th. } 50^{\circ} \end{gathered}$		Difference to be allowed for.			App. Alt.	$\begin{aligned} & \text { Refr. } \\ & \text { B. } 30 \\ & \text { Th. } 50^{\circ} \end{aligned}$		Difference to be allowed for.		
			1^{\prime} Alt.	+ 1 B	$-1^{\circ} \mathrm{Th}$				1' Alt.	+ 1 B	$-1^{\circ} \mathrm{Th}$.
- ,	,	"	"	"	"	- ,		"	"	"	"
00	33	51	11.7	74	$8 \cdot 1$	30		35	3.2	30	$2 \cdot 3$
5	32	53	11.3	71	$7 \cdot 6$	5		19	$3 \cdot 1$	29	2-2
10	31	58	10.9	69	$7 \cdot 3$	10		4	3.0	29	2.2
15	31	5	10.5	67	$7 \cdot 0$	15	13	50	$2 \cdot 9$	28	$2 \cdot 1$
20	30	13	$10 \cdot 1$	65	6.7	20	13	35	2.8	28	$2 \cdot 1$
25	29	24	8.7	63	$6 \cdot 4$	25	13	21	2.7	27	2.0
30	28	37	$9 \cdot 4$	61	$6 \cdot 1$	30	13	7	2.7	27	$2 \cdot 0$
35	27	51	$9 \cdot 0$	59	$5 \cdot 9$	35	12	53	$2 \cdot 6$	26	2.0
40	27	6	8.7	58	5.6	40	12	41	2.5	26	1.9
45	26	24	$8 \cdot 4$	56.	$5 \cdot 4$	45	12	28	2.4	25	1.9
50	25	43	$8 \cdot 0$	55	$5 \cdot 1$	50	12	16	2.4	25	1.9
55	25	3	$7 \cdot 7$	53	4.9	55	12	3	$2 \cdot 3$	25	$1 \cdot 8$
10	24	25	$7 \cdot 4$	52	4.7	40	11	52	$2 \cdot 2$	$24 \cdot 1$	1.70
5	23	48	$7 \cdot 1$	50	4.6	10	11	30	$2 \cdot 1$	23.4	$1 \cdot 64$
10	23	13	6.9	49	$4 \cdot 5$	20	11	10	2.0	$22 \cdot 7$	1.58
15	22	40	$6 \cdot 6$	48	4.4	30	10	50	$1 \cdot 9$	$22 \cdot 0$	1.53
20	22	8	$6 \cdot 3$	46	4.2	40	10	32	1.8	21.3	$1 \cdot 48$
25	21	37	$6 \cdot 1$	45	$4 \cdot 0$	50	10	15	1.7	$20 \cdot 7$	$1 \cdot 43$
30	21	7	5.9	44	8.9	50	9	58	1.6	$20 \cdot 1$	1.38
35	20	38	5.7	43	$3 \cdot 8$	10	9	42	1.5	19.6	$1 \cdot 34$
40	20	10	$5 \cdot 5$	42	3.6	20	9	27	1.5	$19 \cdot 1$	$1 \cdot 30$
45	19	43	$5 \cdot 3$	40	$3 \cdot 5$	30	9	11	1.4	18.6	$1 \cdot 26$
50	19	17	$5 \cdot 1$	39	3.4	40	8	58	1.3	$18 \cdot 1$	1.22
55	18	52	$4 \cdot 9$	39	$3 \cdot 3$	50	8	45	1.3	$17 \cdot 6$	$1 \cdot 19$
20	18	29	$4 \cdot 8$	38	3.2	60	8	32	1.2	17.2	$1 \cdot 15$
5	18	5	$4 \cdot 6$	37	$3 \cdot 1$	10	8	20	1.2	16.8	$1 \cdot 11$
10	17	43	4.4	36	3.0	20	8	9	$1 \cdot 1$	16.4	$1 \cdot 09$
15	17	21	$4 \cdot 3$	36	$2 \cdot 9$	30	7	58	1.1	16.0	$1 \cdot 06$
20	17	0	$4 \cdot 1$	35	$2 \cdot 8$	40	7	47	1.0	$15 \cdot 7$	1.03
25	16	40	$4 \cdot 0$	34	2.8	50	7	37	1.0	$15 \cdot 3$	1.00
30	16	$2 i$	$3 \cdot 9$	33	$2 \cdot 7$	70	7	27	1.0	15.0	0.98
35	16	2	$3 \cdot 7$	83	$2 \cdot 7$	10	7	17	$\cdot 9$	14.6	. 95
40	15	43	3.6	32	$2 \cdot 6$	20	7	8	-9	14.3	. 93
45	15	25	3.5	32	2.5	30	6	59	$\cdot 8$	$14 \cdot 1$	-91
50	15	8	$3 \cdot 4$	31	$2 \cdot 4$	40	6	51	-8	13.8	$\cdot 89$
55	14	53	$3 \cdot 3$	30	$2 \cdot 3$	50	6	43	. 8	$13 \cdot 5$	$\cdot 87$

Young's Refractions have been selected from among those, by different eminent Astronomers, given in Dr. Pearson's Tables.

TABLE IV.-continued.

$\left.\begin{array}{c} \text { Barometer, } 30 \mathrm{in} . \\ + \text { when above } \\ - \text { when below. } \end{array}\right\}$		Table of Refractions.					$\left\{\begin{array}{c} \text { Thermometer, } 50^{\circ} . \\ \text { - when above } \\ + \text { when below. } \end{array}\right.$		
App. Alt.	$\begin{gathered} \text { Refr. } \\ \text { B. } 30 \\ \text { Th. } 50^{\circ} . \end{gathered}$	Difference to be allowed for.			App. Alt.	Refr. B. 30 Th. 50°.	Difference to be allowed for.		
		\mathbf{l}^{\prime} Alt.	+ 1 B	1 Th .			1^{\prime} Alt.	+ 1 B.	-1 Th.
- ,	, "	"	"	"		, "	"	"	"
80	635	$\cdot 7$	18.3	. 85	140	$3 \quad 49.9$	-28	$7 \cdot 70$	$\cdot 469$
10	628	$\cdot 7$	$13 \cdot 1$	-83	10	$\begin{array}{ll}3 & 47 \cdot 1\end{array}$	- 28	$7 \cdot 61$	- 464
20	621	$\cdot 7$	12.8	. 82	20	3844.4	- 27	$7 \cdot 52$	-458
30	614	$\cdot 7$	$12 \cdot 6$	$\cdot 80$	80	$\begin{array}{ll}3 & 11.8\end{array}$	-26	$7 \cdot 43$	-453
40	67	$\cdot 7$	$12 \cdot 3$	$\cdot 79$	40	$\begin{array}{ll}3 & 31 \cdot 2\end{array}$	- 26	$7 \cdot 34$	- 448
50	60	$\cdot 6$	12.1	$\cdot 77$	50	$3 \quad 36.7$	$\cdot 25$	$7 \cdot 26$	-444
90	$5 \quad 54$	${ }^{6}$	11.9	$\cdot 76$	150	$\begin{array}{ll}3 & 34.8\end{array}$	- 24	$7 \cdot 18$	- 439
10	547	$\cdot 6$	11.7	$\cdot 74$	30	$\begin{array}{ll}3 & 27 \cdot 3\end{array}$	-22	6.95	$\cdot 424$
20	$5 \quad 41$	$\cdot 6$	11.5	$\cdot 78$	160	$3 \quad 20.6$	$\cdot 21$	6.73	-411
30	536	$\cdot 6$	11.3	$\cdot 71$	30	3114	-20	6.51	- 399
40	530	$\cdot 5$	$11 \cdot 1$	$\cdot 71$	170	388	-19	6.31	. 386
50	$5 \quad 25$	- 5	11.0	$\cdot 70$	30	$3 \quad 2.9$	-18	6-12	$\cdot 374$
100	520	- 5	10.8	$\cdot 69$	180	$2 \begin{array}{lll}2 & 57.6\end{array}$	$\cdot 17$	5.98	. 362
10	515	$\cdot 5$	$10 \cdot 6$	$\cdot 67$	190	2 477	-16	$5 \cdot 61$	-340
20	$5 \quad 10$	$\cdot 5$	$10 \cdot 4$	$\cdot 65$	200	2888.7	$\cdot 15$	5.31	$\cdot 322$
80	55	-5	$10 \cdot 2$	-64	210	$230 \cdot 5$	-18	$5 \cdot 04$. 305
40	50	-5	10.1	$\cdot 68$	220	$2 \quad 23.2$	$\cdot 12$	$4 \cdot 79$	$\cdot 290$
50	456	$\cdot 4$	$9 \cdot 9$	$\cdot 62$	230	216.5	$\cdot 11$	4.57	-276
110	451	$\cdot 4$	9.8	-60		$2 \quad 10 \cdot 1$	-10	4.35	-264
10	$4 \quad 47$	-4	$9 \cdot 6$	$\cdot 59$	250	$\begin{array}{lll}2 & 4 \cdot 2\end{array}$	-09	$4 \cdot 16$	$\cdot 252$
20	443	$\cdot 4$	$9 \cdot 5$	- 58	260	158.8	. 09	8.97	-241
30	439	$\cdot 4$	$9 \cdot 4$	$\cdot 57$	270	153.8	. 08	3.81	230
40	435	-4	$9 \cdot 2$	$\cdot 56$	280	$149 \cdot 1$	-08	$3 \cdot 65$	-219
50	431	$\cdot 4$	$9 \cdot 1$. 55	290	$1 \begin{array}{ll}14.7\end{array}$. 07	3.50	-209
120	$428 \cdot 1$	$\cdot 38$	9.00	- 556		$1 \begin{array}{ll}1 & 40.5\end{array}$	-07	3.86	-201
10	424.4	. 37	8.86	-548	310	138.6	$\cdot 06$	$8 \cdot 28$	-193
20	$420 \cdot 1$	-36	$8 \cdot 74$	-541	320	1333.0	. 06	$8 \cdot 11$	$\cdot 186$
30	$417 \cdot 3$	-35	$8 \cdot 68$	-533	330	129.5	-06	2.99	-179
40	413.9	-38	$8 \cdot 51$	- 524	340	126.1	. 05	$2 \cdot 88$	$\cdot 178$
50	410.7	. 32	8.41	- 517	350	$1 \quad 20 \cdot 0$	-05	$2 \cdot 78$	$\cdot 167$
180	47.5	.31	8.80	- 509	360	120.0	$\cdot 05$	2.68	-161
10	44.4	. 81	$8 \cdot 20$	- 503	370	$1 \begin{array}{ll}17 \cdot 1\end{array}$	$\cdot 05$	$2 \cdot 58$	$\cdot 155$
20	41.4	. 30	$8 \cdot 10$	-496	380	$1 \quad 14 \cdot 4$	-05	$2 \cdot 49$	$\cdot 149$
80	$3{ }^{3} 585$	-30	$8 \cdot 00$	$\cdot 490$	390	$1 \begin{array}{ll}1 & 11.8\end{array}$	-04	$2 \cdot 40$	$\cdot 144$
40	$3 \quad 55.5$	-29	$7 \cdot 89$	- 482	400	$1 \begin{array}{ll}1 & 9.3\end{array}$	$\cdot 04$	$2 \cdot 32$	$\cdot 139$
50	$3 \quad 52.6$	$\cdot 29$	779	-476	410	$1 \quad 6.9$. 04	$2 \cdot 24$	$\cdot 184$

TABLE IV.-continued.

Barometer, 30 in. + when above - when below.		Table of Refractions.							
$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	$\begin{gathered} \text { Reff. } \\ \text { B. 30 } \\ \text { Th. } 50^{\circ} . \end{gathered}$	Difference to be allowed for.			$\underset{\text { Alt. }}{\text { App. }}$	$\begin{gathered} \text { Reff. } \\ \text { B. } 30 \\ \text { Th. } 50^{\circ} \text {. } \end{gathered}$	Difference to be allowed for.		
		1^{\prime} Alt.	+ 1 B.	-1 Tb .			1^{\prime} Alt.	+ 1 B.	-1 Th .
-	"	"	"	"	-	, "	"	"	"
40	$\begin{array}{ll}1 & 9.8\end{array}$. 040	$2 \cdot 32$	-139	70	$\begin{array}{ll}0 & 21.2\end{array}$. 020	$\cdot 71$. 043
41	$1 \begin{array}{ll}1 & 6.9\end{array}$. 040	$2 \cdot 24$	-134	71	0 19.9	. 020	$\cdot 67$	-040
42	14.6	. 038	$2 \cdot 16$	- 130	72	018.8	. 019	-63	-038
43	12.4	.036	2.09	- 125	73	017.7	. 018	-59	-086
44	$1 \begin{array}{ll}1 & 0.3\end{array}$	-034	2.02	-120	74	016.8	. 018	$\cdot 58$	-033
45	$0 \quad 58.1$. 034	1.94	$\cdot 117$	75	015.5	. 018	$\cdot 52$	-081
46	${ }_{0} 056.1$	-033	1.88	-112	76	014.4	- 018	$\cdot 48$	-029
47	$0 \quad 54.2$. 032	1.81	- 108	77	018.4	-017	45	. 027
48	$\begin{array}{lll}0 & 52.3\end{array}$	-081	1.75	-104	78	0 12.8	- 017	$\cdot 41$	-025
49	$0 \quad 50.5$	- 080	1.69	- 101	79	011.2	$\cdot 017$	- 38	. 023
50	$0 \quad 48.8$. 029	1.63	-097	80	$0 \quad 10.2$. 017	34	. 021
51	0 47.1	- 028	1.58	-094	81	$0 \quad 9.2$	-017	$\cdot 31$	-018
52	$0 \quad 45.4$. 027	1.52	- 090	82	$\begin{array}{ll}0 & 8.2\end{array}$	- 017	$\cdot 27$. 016
53	0 0 43.8	. 026	$1 \cdot 47$	-088	83	$0 \quad 711$. 017	24	. 014
54	$0 \quad 42 \cdot 2$. 026	1.41	. 085	84	0 0 6.1	-017	$\cdot 20$	-012
55.	040.8	. 025	1.36	. 082	85	$0 \quad 5.1$. 017	$\cdot 17$	-010
56	$\begin{array}{ll}0 & 39 \cdot 3\end{array}$. 025	1.31	. 079	86	0 4.1	-017	$\cdot 14$. 008
57	$\begin{array}{ll}0 & 37.8\end{array}$. 025	1.26	. 076	87	0 3.1	. 017	$\cdot 10$	-006
58	038.4	-024	1.22	. 073	88	$0 \quad 2.0$. 017	. 07	. 004
59	$0 \quad 35.0$. 024	1.17	. 070	89	$0 \quad 1.0$. 017	-03	. 002
60	083.6	. 023	$1 \cdot 12$	${ }^{-067}$					
61	$\begin{array}{ll}0 & 32 \cdot 3\end{array}$. 022	1.08	. 065					
62	031.0	. 022	1.04	. 062					
63	$0 \quad 29.7$. 021	. 99	. 060					
64	028.4	. 021	$\cdot 95$. 057					
65	$0 \quad 27.2$. 020	. 91	. 055					
68	$0 \quad 25.9$. 020	. 87	. 052					
67	024.7	. 020	. 83	. 050					
68	023.5	. 020	-79	. 047					
69	$0 \quad 22 \cdot 4$. 020	75	. 045					

TABLE V．

Contraction of Semidiameters of \odot and D from Refraction．							
官	App．Alt．of \bigcirc or D．						
发四	7	$\begin{gathered} \circ \\ 10 \end{gathered}$	12	14	20	32	$\begin{gathered} \circ \\ 90 \end{gathered}$
\bullet	＂	＂	＂	＂	＂	＂	＂
0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0
15	2	1	0	0	0	0	0
24	3	1	1	1	0	0	0
30	4	2	1	1	1	0	0
36	5	3	2	1	1	0	0
42	6	4	2	2	1	0	0
48	8	4	3	2	1	0	0
54	9	5	4	8	1	1	0
60	11	6	4	3	2	1	0
66	12	6	5	3	2	1	0
72	13	7	5	4	2	1	0
90	14	8	5	4	2	1	0

TABLE VI．

© Semidiameter．		
Days．	Jan．	July．
1	16 18	＂ 15
11	$16 \quad 17$	1546
21	$16 \quad 17$	1546
	Feb．	August．
1	$16 \quad 15$	$15 \quad 47$
11	1618	1549
21	1611	$15 \quad 51$
	March．	Sept．
1	1610	$15 \quad 53$
11	167	$15 \quad 56$
21	16	$15 \quad 58$
	April．	Oct．
1	161	161
11	$15 \quad 58$	163
21	$15 \quad 55$	$16 \quad 7$
	May．	Nov．
1	$15 \quad 53$	169
11	$15 \quad 51$	$16 \quad 12$
21	1549	$16 \quad 14$
	June．	Dec．
1	1548	$16 \quad 16$
11	1546	$16 \quad 17$
21	$15 \quad 46$	1618

TABLE VII.

AUGMENTATION OF D's SEMIDIAMETER ACCORDING TO HER increase in altitude.

The Moon's horizontal semidiameter is found in page 3 of each month in the Nautical Almanac, for every day at mean noon and midnight at Greenwich; and the Sun's in page 2, for every mean noon.

	Horizontal Semidiameter.					
	14'30'	$15^{\prime} 0^{\prime \prime}$	15' 30'	$16^{\prime} 0^{\prime \prime}$	$16^{\prime} 30{ }^{\prime \prime}$	$17^{\prime} 0^{\prime \prime}$
\bigcirc	"	"	"	"	"	"
0	0.00	0.00	0.00	0.00	0.00	0.00
3	0.71	0.75	0.80	0.86	0.92	0.97
6	1.41	1.50	1.60	1.71	1.83	1.94
9	$2 \cdot 11$	$2 \cdot 25$	$2 \cdot 40$	2.56	$2 \cdot 73$	$2 \cdot 90$
12	$2 \cdot 81$	3.00	$8 \cdot 20$	$3 \cdot 41$	$8 \cdot 63$	$3 \cdot 86$
15	3.50	$3 \cdot 74$	8.99	425	$4 \cdot 52$	$4 \cdot 80$
18	4.17	4.46	4.76	5.07	5.39	5.73
21	4.84	$5 \cdot 18$	$5 \cdot 52$	5.89	$6 \cdot 26$	6.65
24	$5 \cdot 49$	5.88	6.27	6.68	$7 \cdot 11$	7.54
27	$6 \cdot 13$	6.56	7.00	$7 \cdot 46$	7.93	8.42
30	6.75	7.28	$7 \cdot 71$	8.22	8.74	$9 \cdot 28$
33	7.35	7.88	$8 \cdot 40$	8.96	9.52	$10 \cdot 12$
36	7.93	$8 \cdot 50$	$9 \cdot 07$	$9 \cdot 67$	10.28	10.92
39	$8 \cdot 49$	$9 \cdot 10$	$9 \cdot 72$	10.36	11.02	11.66
42	9.03	$9 \cdot 68$	10.34	11.02	11.72	12.44
45	9.55	10.23	10.93	11.65	12.38	18.15
48	10.05	10.76	11.49	12.25	13.03	18.83
51	10.52	11.26	12.02	12.81	13.63	14.46
54	10.95	11.72	12.52	$13 \cdot 34$	14.19	15.06
57	11.35	$12 \cdot 15$	12.98	18.88	14.72	15.62
60	11.72	12.55	18.40	14.29	15.20	16.18
63	12.06	12.91	13.79	14.70	15.64	16.60
66	$12 \cdot 37$	13.24	14.14	15.08	16.04	17.03
69	12.64	13.53	14.46	15.41	16.39	17.40
72	12.88	13.79	14.73	15.70	16.70	17.73
75	13.08	14.01	14.96	15.95	16.96	18.01
78	18.24	14.18	15.15	16.15	$17 \cdot 18$	18.24
81	13.37	14.32	15.30	16.31	17.35	18.42
84	$13 \cdot 46$	14.42	15.41	16.42	17.47	18.55
87	13.52	14.48	15.47	16.49	17.54	18.62
90	18.54	14.50	15.49	16.51	17.57	18.65

TABLE VIII.

PARALLAX OF THE SUN ON THE FIRST DAY OF EACH MONTH, THE MEAN HORIZONTAL Parallax being $\mathbf{8}^{\prime \prime} \mathbf{6 0}$.

Altitude.	Jan.	Feb. Dec.	March Nov.	$\begin{aligned} & \text { April } \\ & \text { Oct. } \end{aligned}$	May Sept.	June Ang.	July.
"	"	"	"	"	"	-"	"
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00
85	0.76	0.76	0.76	0.75	0.74	0.74	0.74
80	1.52	1.52	1.51	$1 \cdot 49$	$1 \cdot 48$	1.47	1.47
75	$2 \cdot 26$	$2 \cdot 26$	$2 \cdot 25$	$2 \cdot 23$	$2 \cdot 21$	$2 \cdot 19$	$2 \cdot 19$
70	$2 \cdot 99$	$2 \cdot 98$	$2 \cdot 97$	$2 \cdot 94$	2.92	$2 \cdot 90$	2.89
65	3.70	3.69	$3 \cdot 67$	$8 \cdot 68$	$8 \cdot 60$	3.58	$8 \cdot 57$
60	. 4.37	$4 \cdot 36$	4.34	$4 \cdot 30$	$4 \cdot 26$	4.24	4.23
55	$5 \cdot 02$	5.01	4.98	$4 \cdot 93$	4.89	4.86	4.85
50	5.62	$5 \cdot 61$	$5 \cdot 58$	5.53	5.48	5.45	5.44
45	$6 \cdot 19$	$6 \cdot 17$	$6 \cdot 13$	6.08	6.03	5.99	5.98
40	6.70	6.68	6.64	6.59	6.53	6.49	6.48
35	$7 \cdot 17$	$7 \cdot 15$	$7 \cdot 11$	$7 \cdot 04$	6.99	6.94	6.93
30	7.58	$7 \cdot 56$	7.51	$7 \cdot 45$	$7 \cdot 39$	$7 \cdot 34$	7.38
25	7.98	7.91	$7 \cdot 86$	7.79	7.78	$7 \cdot 68$	$7 \cdot 67$
20	8.22	8.20	$8 \cdot 15$	8.08	8.01	7.97	7.95
15	8.45	8.48	8.38	8.80	$8 \cdot 24$	$8 \cdot 19$	$8 \cdot 17$
10	$8 \cdot 62$	8.59	8.54	$8 \cdot 47$	$8 \cdot 40$	8.35	8.33
5	8.73	8.69	$8 \cdot 64$	8.56	8.50	8.44	8.42
0	8.75	8.78	8.67	$8 \cdot 60$	$8 \cdot 53$	$8 \cdot 48$	$8 \cdot 46$

The Sun's Horisontal Parallax is also given for every ten days, in the Nautical Almanac, immediately before the ephemeris of the planets.

The Sun's Parallax in Altitude, for every degree, is given in the last of Dr. Pearson's "Solar Tables," vol. i. page 180.

TABLE IX.
REDUCTION OF THE MOON'S EQUATORIAL HORIZONTAL PARALLAX, to the horizontal parallax in any latitude.

Latitude.	HORIZONTAL PARALLAX.				
	54'	56'	58^{\prime}	60^{\prime}	62'
-	"	"	"	"	"
0	0.0	0.0	0.0	0.0	0.0
8	0.2	0.2	0.2	0.2	0.2
16	0.8	0.8	0.9	0.9	0.9
20	1.3	1.8	1.4	1.4	1.5
24	1.8	1.9	1.9	$2 \cdot 0$	2.0
28	2.4	2.5	2.6	$2 \cdot 6$	2.7
32	3.0	$8 \cdot 1$	8.3	$8 \cdot 4$	$8 \cdot 5$
36	8.7	$3 \cdot 9$	4.0	$4 \cdot 1$	4.8
40	4.5	$4 \cdot 6$	4.8	$5 \cdot 0$	$5 \cdot 1$
44	5.2	$5 \cdot 4$	5.6	$5 \cdot 8$	6.0
48	6.0	6.2	6.4	6.6	6.8
52	6.7	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 4$	$7 \cdot 6$
56	$7 \cdot 4$	7.7	8.0	8.2	8.5
60	$8 \cdot 1$	8.4	8.7	$9 \cdot 0$	$9 \cdot 3$
64	8.7	$9 \cdot 1$	$9 \cdot 4$	$9 \cdot 7$	10.0
68	$9 \cdot 3$	$9 \cdot 6$	10.0	10.3	$10 \cdot 6$
72	9.8	10.1	10.4	10.8	$11 \cdot 2$
76	$10 \cdot 2$	10.6	$10 \cdot 9$	11.8	11.7
84	10.7	11-1	11.5	11.9	12.0
90	$10 \cdot 8$	11.2	11.6	12.0	12.4

The Moon's Horizontal Parallax, given in the third page of each month in the Nautical Almanac for noon and midnight, is the equatorial parallax for Greenwich mean noon and midnight ; from thence it is to be deduced for the time and place of observation. The correction for latitude, on account of the spherical figure of the earth, is seldom thought of at sea, but can be made from the table above. Thus, supposing the hor. equat. par. to be 58^{\prime}; the hor. par. in lat. 52° would be $58^{\prime}-7^{\prime \prime} \cdot 2=57^{\prime} 52^{\prime \prime} .8$.

This reduced hor. par. is to be farther corrected for altitude by means of tables for that purpose (see Pearson, vol. i. pages 188 to 196 : and Riddle, pages 156^{*} to 173); or by the following rule:-sin hor. par. $\times \cos$ alt. $=$ sine par. in alt.

[^105]
TABLE X.

App. Alt.	PLANBT'S HORIZONTAL PARALLAX.													
	"1	$\prime \prime$ 3 5	$\prime \prime$ 7 9	" 11	13	15	" 17	" 19	21	23	25	27	29	" 31
\bigcirc	"	" ${ }^{\prime}$	" "	"	"	"	"	"	"	"	"	"	"	"
0	1	35	79	11	13	15	17	19	21	23	25	27	29	31
10	1	35	79	11	18	15	17	19	21	23	25	27	29	80
20	1	35	7 9	10	12	14	16	18	20	22	24	25	27	29
25	1	35	68	10	12	14	15	17	19	21	23	24	26	28
89	1	34	68	10	11	13	15	16	18	20	22	23	25	27
33	1	24	68	9	11	13	14	16	18	19	21	23	24	26
36	1	24	${ }^{6} 7$	9	11	12	14	15	17	19	20	22	23	25
39	1	24	57	9	10	12	13	15	16	18	19	21	23	24
42	1	24	57	8	10	11	13	14	16	17	19	20	22	23
45	1	24	56	8	9	11	12	13	15	16	18	19	21	22
48	1	23	56	7	9	10	11	13	14	15	17	18	19	21
51	1	23	4.6	7	8	9	11	12	13	14	16	17	18	20
54	1	23	45	6	8	9	10	11	12	14	15	16	17	18
57	1	23	45	6	7	8	9	10	11	12	14	15	16	17
60	1	28	45	6	7	8	9	10	11	12	13	14	15	16
63	0	12	34	5	6	7	8	9	10	10	11	12	13	14
66	0	12	34	4	5	6	7	8	9	9	10	11	12	13
69	0	12	3.3	4	5	5	6	7	8	8	9	10	10	11
72	0	12	23	3	4	5	5	6	6	7	8	8	9	10
75	0	11	22	3	8	4	4	5	5	6	6	7	8	8
78	0	11	12	2	3	3	4	4	4	5	5	6	6	6
81	0	01	11	2	2	2	8	3	3	4	4	4	5	5
84	0	01		1	1	2	2	2	2	2	3	3	3	3
87	0	00		1	1	1	1	1	1	1	1	1	2	2
90	0	00	00	0	0	0	0	0	0	0	0	0	0	0

The Parallaxes and Semidiameters of the Planets are given in the Nautical Almanac.

TABLE XI.

DIP OF THE SEA HORIZON.

	Dip.	Height of the Bye in Peet.	Dip.	Height of the Bye in Peet.	Dip.	Height of the Bye in Feet.	Dip.
1	$\begin{array}{ll}\prime & \prime \prime \\ 0 & 59\end{array}$	18	$\begin{array}{ll}\prime & \prime \prime \\ 4 & 11\end{array}$	35	$\begin{array}{lc}1 \\ 5 & 49\end{array}$	86	' 18
2	124	19	417	38	64	89	$9 \quad 17$
8	142	20	424	41	618	92	926
4	158	21	431	44	632	95	936
5	212	22	437	47	$6 \quad 45$	98	945
6	$2 \quad 25$	23	443	50	658	101	954
7	236	24	449	53	$7 \quad 10$	104	102
8	$2 \quad 47$	25	455	56	722	107	$10 \quad 11$
9	$2 \quad 57$	26	51	59	784	110	1019
10	$\begin{array}{ll}3 & 7\end{array}$	27	5 5 7	62	$7 \begin{array}{ll}7 & 45\end{array}$	113	$10 \quad 28$
11	316	28	513	65	$7 \quad 56$	116	$10 \quad 36$
12	$3 \quad 25$	29	518	68	87	119	1044
13	333	30	524	71	818	122	1052
14	341	31	529	74	$8 \quad 28$	125	110
15	349	32	534	77	838	128	118
16	856	83	539	80	8 8 48	131	1116
17	44	34	544	83	858	134	1124

TABLE XII.
DIP OF THE SEA HORIZON AT DIFFERENT DISTANCES FROM IT.

Distance in Miles.	Height of the Bye in Feet.					
	5	10	15	20	25	30
	,	,	,	,	,	,
0.25	11	22	34	45	56	68
0.5	6	11	17	22	28	34
0.75	4	8	- 12	15	19	23
1.0	4	6	9	12	15	17
1.25	3	5	7	9	12	14
1.5	3	4	6	8	10	12
$2 \cdot 0$	2	8	5	6	8	10
2.5	2	8	5	6	7	8
3.0	2	8	4	5	6	7
$3 \cdot 5$	2	3	4	5	6	6
$4 \cdot 0$	2	3	4	4	5	6
$5 \cdot 0$	2	8	4	4	5	5
6.0	2	8	4	4	5	5

'I'ABLE XIII.

FOR THE REDUCTION OF THE MERIDIAN,

Showing the value of $A=\frac{2 \sin ^{2} \frac{1}{2} P}{\sin 1^{\prime \prime}}$.

Sec	On	11	2 m .	3 n				7 m.	8 m .	9 m.	10 m .	11 m.	12 m .	13 m .	14m.
0	00	$2 \cdot 0$	78	177	31.4	$49 \cdot 1$	707	96.2	1257	159.0	196.3	237.5	282.7	331.8	3847
1	0.0	20	8.0	17.9	31.7	49'4	$71 \cdot 1$	96.7	126-2	$159 \cdot 6$	197.0	238.3	$283 \cdot 5$	332.6	$385 \cdot 6$
2	0.0	$2 \cdot 1$	8.1	$18 \cdot 1$	31.9	497	$71 \cdot 5$	$97 \cdot 1$	126.7	$160 \cdot 2$	197.6	239.0	$284 \cdot 2$	$333 \cdot 4$	$386 \cdot 6$
3	$0 \cdot 0$	2.2	8.2	$18 \cdot 3$	$32 \cdot 2$	$50 \cdot 1$	71.9	$97 \cdot 6$	127-2	$160 \cdot 8$	198.3	2397	285.0	$334 \cdot 3$	$387 \cdot 5$
4	$0 \cdot 0$	2-2	8.4	18.5	$32 \cdot 5$	$50 \cdot 4$	$72 \cdot 3$	98^{90}	$127 \cdot 8$	161.4	198.9	$240 \cdot 4$	$285 \cdot 8$	3355	38884
5	$0 \cdot 0$	$\stackrel{2 \cdot 3}{2-4}$	8.5	18.7	${ }^{32} 7$	$50^{\circ} 7$	$72 \cdot 7$ 73.1	988	128.3	$162^{\circ} 0$	199.6	$241-2$ $241-9$	${ }_{2876}^{286}$	336.0 336.9	38973 $390-9$
6	0.0 0.0	2.4 2.4 2.4	877 8.8	18.9 19.1	33.0 33.3	51.1 51.4	$73 \cdot 1$ $73 \cdot 5$	99.0 99	12888 1293	162.6 163.2	$200 \cdot 3$ $200 \cdot 9$	2419 2426	287.4 288.2	$336-9$ 337	$390 \cdot 2$ $391 \cdot 1$
7	0.0 0.0	2.4	$8 \cdot 8$ 8.9	19 19 19	$33 \cdot 3$ $33 \cdot 5$	51.4 51.7	$73 \cdot 5$ 73.9	99.4 999	1298 129	163.2 163	200.9	243.3 243	2889 289	${ }^{3387}$	39911 39211
9	$0 \cdot 0$	$2 \cdot 6$	$9 \cdot 1$	19.5	33.8	$52 \cdot 1$	$74 \cdot 3$	$100 \cdot 4$	$130-4$	164.4	202.2	$244 \cdot 1$	28978	3394	39370
10	$0 \cdot 1$	2.7	$9 \cdot 2$	197	$34 \cdot 1$	$52 \cdot 4$	747	$100 \cdot 8$	131.0	165.0	$202 \cdot 9$	244.8	2906	3403	$393 \cdot 9$
11	$0 \cdot 1$	27	$9 \cdot 4$	199	34.4	$52 \cdot 7$	$75 \cdot 1$	$101 \cdot 3$	131.5	$165 \cdot 6$	203.6	245.5	291.4	$341 \cdot 2$	$394 \cdot 8$
12	$0 \cdot 1$	28	$9 \cdot 5$	20.1	34.6	53.1	$75 \cdot 5$	101.8	1320	166^{2}	204.2	2463	292-2	342.0	$395 \cdot 8$
13	01	29	$9 \cdot 6$	20.3	34.9	53.4	$75 \cdot 9$	102•3	13276	1668	204.9	2470	293.0	$342 \cdot 9$	3967
14	$0 \cdot 1$	$3 \cdot 0$	$9 \cdot 8$	$20 \cdot 5$	$35^{\circ} 2$	53.8	763	$102 \cdot 7$	1331	167.4	$205 \cdot 6$	2477	29378	$343-7$	3976
15	0-1	3-1	$9 \cdot 9$	20.7	$35 \cdot 5$	$54 \cdot 1$	$76 \cdot 7$	$103 \cdot 2$	133.6	168.0	206.3	248.5	294.6	$344 \cdot 6$	398-6
16	$0 \cdot 1$	$3 \cdot 1$	$10 \cdot 1$	$20-9$	357	54.5	$77 \cdot 1$	1037	$134 \cdot 2$	168.6	$206 \cdot 9$	94972	295.4	$345 \cdot 5$	399.5
17	0.2	$3 \cdot 2$	10.2	21.2	36.0	54.8	$77 \cdot 5$	$104 \cdot 2$	13477	$169{ }^{\circ}$	2076	$249 \cdot 9$	$296 \cdot 2$	346.4	4005
18	$0-2$	$3 \cdot 3$	104	21.4	$36 \cdot 3$	55.1	$77 \cdot 9$	$104 \cdot 6$	$135 \cdot 3$	1698	208.3	2507	$297 \cdot 0$	$347 \cdot 2$	401.4
19	0.2	$3 \cdot 4$	105	21.6	$36 \cdot 6$	55.5	78.3	$105 \cdot 1$	1358	$170 \cdot 4$	208.9	251.4	297.8	348 -1	$402 \cdot 3$
20	0.2	3.5	107	21.8	$36^{\circ} 9$	55.8	78.8	1056	136.3	171.0	$209 \cdot 6$	$252 \cdot 2$	298.6	349-0	$403 \cdot 3$
21	$0 \cdot 2$	36	10.8	22.0	$37 \cdot 2$	56.2	$79 \cdot 2$	106'1	1369	171.6	2103	253.0	2997	34978	404.2
22	$0 \cdot 3$	$3 \cdot 7$	11.0	$22 \cdot 3$	374	56^{565}	79.6	106.6	137.4	$172 \cdot 2$	$211{ }^{\circ} 0$	${ }^{2535}$	$300 \cdot 2$	3507	$405 \cdot 1$
23	0.3	$3 \cdot 8$	11.2	22.5	377	56.9	$80^{\circ} 0$	1070	$138{ }^{\circ} 0$		211.7	254.4	301.0	351.6	$406{ }^{\circ}$
24	$0 \cdot 3$	38	11.3	22.7	380	57.3	80.4	1075	138.5	$173 \cdot 5$	$212 \cdot 3$	$255 \cdot 1$	8	$352 \cdot 5$	407.0
25	0.3	39	11.5	22.9	383	57.6	$80 \cdot 8$	108.0	13971	$174 \cdot 1$	213.0	${ }^{255} 5$	302.6	3533	4080
26	0.4	$4 \cdot 0$	11.6	23.1	38.6	58.0	81.3	108.5	1396	1747	213.7	$256{ }^{\circ} 6$	303.5	354-2	408*9
27	$0 \cdot 4$	$4 \cdot 1$	11.8	$23 \cdot 4$	38.9	5883	81.7	$109{ }^{\circ} 0$	$140^{\circ} 2$	$175 \cdot 3$	214.4	2574	304.3	$355 \cdot 1$	$409 \cdot 9$
28	$0 \cdot 4$	$4 \cdot 2$	11.9	$23 \cdot 6$	$39^{\circ} 2$	587	82.1	1095	1407	$175 \cdot 9$	$215 \cdot 1$	$258 \cdot 1$	$305 \cdot 1$	356.0	4108
29	0.5	$4 \cdot 3$	$12 \cdot 1$	23.8	$39^{\circ} 5$	59.0	$82 \cdot 5$	1100	$141 \cdot 3$	176.6	$215 \cdot 8$	258.9	305.9	356.9	4117
30	0.5	$4 \cdot 4$	$12 \cdot 3$	24.0	39.8	59.4	83.0	1104	141.8	177.2	216.4	259.6	3067	3577	
31	0.5	$4 \cdot 5$	$12 \cdot 4$	24.3	$40 \cdot 1$	598	83.4	1109	$142 \cdot 4$	$177 \cdot 8$	$217 \cdot 1$	$260 \cdot 4$	$307 \cdot 5$	358.6	$413 \cdot 6$
32	$0 \cdot 6$	4.6	$12 \cdot 6$	24.5	$40^{\prime} 3$	${ }^{60} 1$	83.8	111.4	143.0	178.4	2178	$261 \cdot 1$	308.4	359.5	414.6
33	0.6	4.7	$12 \cdot 8$	24.7	$40^{\circ} 6$	60.5	$84 \cdot 2$	111.9	1435	1790	218.5	261.9	$309 \cdot 2$	360.4	$415 \cdot 5$
34	0.6	4.8	$12^{\circ} 9$	$25 \cdot 0$	$40 \cdot 9$	$60^{\circ} 8$	84.7	112.4	$144 \cdot 1$	1797	$219 \cdot 2$	262.6	310%	$361 \cdot 3$	416.5
35	07	$4 \cdot 9$	$13 \cdot 1$	$25 \cdot 2$	41.2	$61{ }^{\circ} 2$	85.1	$112 \cdot 9$	1446	1803	$219 \cdot 9$	$263 \cdot 4$	3108	$362 \cdot 2$	$417 \cdot 5$
36	0.7	$5 \cdot 0$	$13 \cdot 3$	25.4	41.5	${ }^{61.6}$	$85 \cdot 5$	113.4	$145 \cdot 2$	$180 \cdot 9$	$220 \cdot 6$	$264 \cdot 1$	3116	${ }^{363 \cdot 1}$	$418 \cdot 4$
37	0.7	$5 \cdot 1$	13.4	$25 \cdot 7$	$41^{\prime} 8$	61.9	$86^{\circ} 0$	113.9	$145 \cdot 8$	181.6	$221 \cdot 3$	$264 \cdot 9$	312.5	364.0	$419 \cdot 3$
38	0.8	$5-2$	13.6	$25 \cdot 9$	$42^{\prime} 1$	62^{3}	86.4	114.4	1463	$182 \cdot 2$	$222 \cdot 0$	$265 \cdot 7$	313.3	3648	$420 \cdot 3$
39	0.8	$5 \cdot 3$	13.8	$26 \cdot 2$	$42^{\circ} 5$	627	$86^{\circ} 8$	114.9	$146 \cdot 9$	1828	$222 \cdot 7$	266.4	314-1	3657	421-3
40	$0 \cdot 9$	$5 \cdot 4$	14.0	26.4	$42 \cdot 8$	630	87.3	115.4	1475	183.5	223.4	267.2	315%	366.6	422-2
41	$0-9$	$5 \cdot 6$	14.1	$26 \cdot 6$	43.1	63.4	$87 \cdot 7$	115.9	14880	1841	$224 \cdot 1$	267.9	$315 \cdot 8$	$367 \cdot 5$	$423 \cdot 2$
42	1.0	5.7	$14 \cdot 3$	26.9	43.4	63.8	88.1	116.4	$148 \cdot 6$	$184 \cdot 7$	$224 \cdot 8$	268.7	316.6	$368{ }^{4}$	424-2
43	1.0	$5 \cdot 8$	14.5	$27 \cdot 1$	$43^{\prime} 7$	$64^{\circ} 2$	88.6	116.9	1492	185.4	$225 \cdot 5$	$269 \cdot 5$	317.4	$369 \cdot 3$	$425 \cdot 1$
44	$1 \cdot 1$	$5 \cdot 9$	14.7	$27 \cdot 4$	$44^{\circ} 0$	$64^{5} 5$	89.0	117.4	1497	186.0	226.2	2703	3183	$370 \cdot 2$	426.1
45	$1 \cdot 1$	60	14.8	27.6	44.3	$64 \cdot 9$	89.5	1179	$150-3$	1866	226.9	271.0	319.1	371.1	427.0
46	1.2	$6 \cdot 1$	$15^{\circ} 0$	27.9	$44^{6} 6$	$65 \cdot 3$	89.9	1184	1509	187.3	$227 \cdot 6$	271.8	319.9	372.0	4280
47	1.2	6.2	$15 \cdot 2$	28.1	44.9	$65^{\circ} 7$	90.3	118.9	$151 \cdot 5$	1879	228.3	$272 \cdot 6$	3208	$372 \cdot 9$	429.0
48	1.3	$6 \cdot 4$	$15 \cdot 4$	$28 \cdot 3$	$45^{\prime 2}$	66°	$90 \cdot 8$	1195	${ }^{152} 2$	1885	229.0	$273 \cdot 3$	321.6	373.8	429-9
49	$1 \cdot 3$	$6 \cdot 5$	15.6	286	$45^{\prime} 5$	66.4	$91 \cdot 2$	120.0	$152 \cdot 6$	$189 \cdot 2$	2297	$274 \cdot 1$	$322 \cdot 4$	374.7	$430-9$
50	1.4	$6 \cdot 6$	15.8	28.8	45.9	$66^{\circ} 8$	91.7	120.5	153.2	$189 \cdot 8$	230.4	$274 \cdot 9$	323.3	3756	$431-9$
51	1.4	67	$15 \cdot 9$	$29 \cdot 1$	462	67×2	$92 \cdot 1$	121.0	$153 \cdot 8$	$190 \cdot 5$	$231 \cdot 1$	$275 \cdot 6$	324-1	$376 \cdot 5$	$432 \cdot 8$
52	1.5	6^{68}	$16 \cdot 1$	29.4	465	67.6	$92 \cdot 6$	121.5	$154 \cdot 4$	191.1	$231 \cdot 8$	$276 \cdot 4$	325.0	3774	$433 \cdot 8$
53	1.5	$7 \cdot 0$	$16 \cdot 3$	29.6	46.8	68.0	93.0	$122 \cdot 0$	$154 \cdot 9$	191.8	$232 \cdot 5$	$277 \cdot 2$	$325 \cdot 8$	378.3	$434 \cdot 8$
54	1.6	$7 \cdot 1$	$16 \cdot 5$	$29 \cdot 9$	47.1	68.3	93.5	$122 \cdot 5$	1555	1924	233.2	278.0	326.7	$379 \cdot 3$	435.8
55	1.6	7.2	16.7	$30 \cdot 1$	47.5	687	$93 \cdot 9$	$123 \cdot 1$	$156 \cdot 1$	$193 \cdot 1$	234.0	278.8	$327 \cdot 5$	$380 \cdot 2$	436.7
56	1.7	$7 \cdot 3$	16.9	$30 \cdot 4$	478	$6^{69} 1$	$94 \cdot 4$	$123 \cdot 6$	1567	1937	234.7	$279 \cdot 5$	328.4	$381 \cdot 1$	437.7
57	1.8	7.5	$17 \cdot 1$	$30 \cdot 6$	48.1	69.5	94.8	$124 \cdot 1$	157.3	194.4	$235 \cdot 4$	$280 \cdot 3$	$329 \cdot 2$	382.0	438.7
58	1.8	$7 \cdot 6$	17.3	30.9	48.4	$69 \cdot 9$	95.3	124.6	157.8	$195{ }^{\circ} 0$	${ }^{236} \cdot 1$	$281 \cdot 1$	$330 \cdot 0$	382.9	4397
59	$1 \cdot 9$	$7 \cdot 7$	$17 \cdot 5$	$31 \cdot 1$	$48 \cdot 8$	$70 \cdot 3$	95.7	125•1	158.4	1957	236.8	281.9	$330 \cdot 9$	383.8	$440 \cdot 6$

Table XVIII. of Mr. Baily extends to 36 minutes from the meridian.

TABLE XIV.

TO COMPUTE THE EQUATION OF EQUAL ALTITUDES.

Inter- val.	Log. A .	Log. B.	Interval.	Log. A.	Log. B.	val.	g. A.	Log. B.	Inter- val.	Log. A.	Log. B.
	77297	77146	40		76883	6			${ }_{8}^{\text {H. }} \mathrm{M}$.		
29	72298	${ }^{7} 7143$	4	7451	${ }^{6} 6815$	${ }^{6}$	${ }^{7} 7708$	${ }_{8184}$	8	${ }^{7} 88079$	${ }^{7} 50388$
4	7300	${ }^{7} 139$	4	7454	${ }^{6807}$	4	$\cdot 7713$	${ }^{6170}$	4	90906	. 5010
${ }_{8}^{6}$	7302 7304	7136 7138	${ }_{8}^{6}$	7458 7461	-6910	8	$\begin{array}{r}7719 \\ \hline 7724\end{array}$	6156 .6148 6	8	-8094	$\begin{array}{r}4983 \\ \hline 496\end{array}$
10	$\cdot 7305$	7128	10	-7464	6784	10	-7729	${ }^{6127}$	10	8108	4930
18	7307	7125	12	7468	6776	18	7735	${ }^{-113}$	18	8116	-4902
14	$\xrightarrow{7309}$	7191 7117	16	7478	$\begin{array}{r}6768 \\ \hline 6759 \\ \hline 685\end{array}$	14	-7740	-6098	14	${ }^{8183}$	-4874
18	7313	7113	18	7475 749	${ }_{6} 6751$	18	7751	6063 6068	18	$\begin{array}{r}\text {-8130 } \\ \hline 8138\end{array}$. 48818
20	7315	7109	90	7489	6743	$\stackrel{8}{20}$	7756	6053	90	8145	89
8	7317	7105	${ }_{98}^{98}$	7436	6734	24	7768	${ }^{60} 683$	9	${ }^{8153}$	${ }^{4} 460$
${ }_{98} 9$	${ }_{7}^{7319}$	71097	$\stackrel{94}{98}$	7498	$\begin{array}{r}6728 \\ \hline 717\end{array}$	$\begin{array}{r}24 \\ 28 \\ \hline\end{array}$	7777	+6023	94 98	8160 8168	-4731
${ }_{28}^{28}$	${ }_{7323}$	7092	${ }_{28}^{8}$	7497	${ }_{6708}$	${ }_{28}$	7779	-8991	${ }_{88}$	${ }^{8178}$	-4671
30	7325	7008	30	7501	6700	30	7784	-5975	30	${ }^{8183}$	4640
${ }_{3}^{38}$	$\stackrel{7}{7327}$	7083	${ }_{3}^{32}$	7506	6691	38	7790	-6959	38	8191	${ }^{4} 4609$
34 36	${ }^{7} 73329$	7079 7075	3	7309 7513	${ }_{6}^{6688}$	34 38	${ }^{7} 77981$	-5963	${ }_{36}^{34}$	${ }_{-8199}$	-4578
${ }_{38}$	7333	7070	38	7517	${ }_{6663}$	${ }_{38}$	7807	-5900	${ }_{38} 8$	8814	4514
40	7336	7065	40	75	-	40	7813	${ }^{5694}$	40	${ }^{82982}$	88
4	-7338	-7061	$\stackrel{48}{4}$	785989	${ }^{66645}$	4	78819	-5877	48	${ }_{-883}^{883}$. 4419
46	7342	7051	46	7533	6685	46	7831	-5843	46	-8846	-4881
48	7345	7046	48	7337	${ }^{-6616}$	48	7838	. 5625	48	-8254	4347
${ }_{50}^{50}$	${ }^{-7347}$	7041	50	7.7541	+6606	50	7848	-5800	80	-8889	4318
68	7358	-7031	${ }_{54}$	7549	${ }^{6} 65976$	58 54	78	-5790	58	${ }_{8} 8878$	-427
${ }^{56}$	7354	7026	${ }_{68}^{56}$.7563	${ }_{6}^{6577}$	56	7860	. 5754	56	8296	4805
58	7357	7021	58	755	656	68	78	. 6736	58	82	4168
30	73	7015		75	${ }^{6356}$	7 \%	7878	17		${ }^{83818}$	131
	-7364	7000	4	7666 7750	${ }_{-6536} 6$	4	77885	${ }_{-5680}$	4	-8319	-4035
6	7367	6099	6	75	${ }^{6525}$	6	7891	. 56661	6	${ }^{83288}$. 4016
8	73399	${ }^{60993}$	${ }^{8}$	7579 7583	6514 .8504	${ }^{8}$	7898	${ }_{-5682}$	${ }^{8}$	${ }^{8338}$. 3097
18	-7374	-6989	12	7568	6493	12	7910	. 5602	12	.8343	-3806
14	$\cdot 7377$	${ }^{6976}$	14	7398	${ }^{6492}$	14	7916	-5369	14	-8381	-3855
18	7380 7383	$\begin{array}{r}6670 \\ \hline 6894\end{array}$	18	7597 7601	6471 6460	${ }_{18}^{18}$	7923 7929	- 5602 -5642	18	-8370	-3813 -3771
	73										
24	7	-69	$\stackrel{98}{94}$	7610 7615	${ }_{6}^{6437}$	24	-7948	-8501	98 94		
${ }_{86}$. 7394	-69	${ }_{26}$	7620	6414	${ }_{98}$	7	${ }^{-5454}$	88	${ }_{-813}$. 3604
${ }^{28}$	7397	6934	${ }^{88}$.7624	6408	$\stackrel{28}{88}$	7962	-5437	${ }^{28}$	-8428	. 3548
30	74	692	30	7689	-6390	30	7989	-5416	30	8	${ }^{33501}$
38	74	-692	${ }_{34}^{38}$	7634	63	${ }_{34}^{32}$	7975	-5394	${ }_{38}$	-8439	${ }^{3444}$
${ }_{36}$	7408 7409	69	${ }_{36}$	7643	-	36	${ }^{7} 79889$	${ }_{-6350}$	${ }_{36}$	8467	. 3367
38	7412	-6901	38	7648	6342	38	77996	. 5337	38	${ }^{8466}$	3007
	7415	6899		7653	63		-8002	$\stackrel{53}{ }$		88475	-3256
48	7418	${ }^{6} 688888$	44	${ }_{7} 76688$	${ }_{6}^{6317}$	$\stackrel{42}{44}$	${ }^{80009}$	${ }_{\text {- }}^{\text {- } 5288}$	4	${ }^{8} 84893$	${ }_{.3159}^{3208}$
46	7424	-6874	46	7668	6891	46	-8083	- 5234	6	-8502	-3099
48	742	6887	48	7673	${ }^{6878}$	48	9130	-5911	48	8512	. 3045
${ }_{58}^{50}$	7	${ }_{6}^{68559}$	80 82	7678 7683	-6258	50 58 58	${ }^{-80374}$	- 518186	60	${ }^{8} 85300$	-2999
*	7437	-6845	54	7688	6.6239		-8051	- 5137	54	8859	${ }_{-2876}$
\% 58	7441 744	${ }_{-6630} 688$	58	76993	${ }^{66295}$	58	${ }_{-8065}$.5118 .8008	58	-8548	${ }_{-2788}$
0	$7 \cdot 7447$	7 76823	60	77703	78188	80	7.8078	7.5062	10	7-8567	7-9897

In Table XVI. of Mr. Baily, the Equation of equal Altitudes is given for the entire interval of 24 hours, but it is seldom required beyond the above limits.

TABLE XV.
length of a second of latitude and longitude in feet on the surface of the earth, the compression being TAKEN AS $\frac{1}{3} \frac{1}{0}$.

Lat.	Seconds of Longitude.	Seconds of Latitude.	Lat.	Seconds of Longitude.	Seconds of Latitude.	Lat.	Seconds of Longitade.	$\begin{gathered} \text { Seconds } \\ \text { of } \\ \text { Latitude. } \end{gathered}$
0	101.42	$101 \cdot 42$	25	91.97	101.60	50	$65 \cdot 32$	102.02
1	$101 \cdot 40$		26	91.21		51	63.95	
2	$101 \cdot 36$		27	$90 \cdot 43$		52	62.57	
3	$101 \cdot 28$		28	89.62		53	61-17	
4	101.17		29	88.77		54	59.75	
5	101.08	101.43	80	87.90	101.67	55	58.30	102-11
6	100.87		31	87.01		56	56.84	
7	100.67		82	86.09		57	55.37	
8	100.44		33	$85 \cdot 14$		58	53.87	
9	$100 \cdot 18$		34	84-17		59	$52 \cdot 36$	
10	99.89	$101 \cdot 45$	85	$83 \cdot 17$	$101 \cdot 75$	60	50.84	102•19
11	99.57		36	$82 \cdot 15$		61	$49 \cdot 30$	
12	99.22		37	$81 \cdot 10$		62	47.74	
13	98.84		88	80.02		63	$46 \cdot 17$	
14	98.43		39	78.92		64	$44 \cdot 58$	
15	97.99	$101 \cdot 49$	40	77.80	101.84	65	42.98	102.26
16	97.52		41	76.65		66	41.37	
17	97.02		42	$75 \cdot 48$		67	$39 \cdot 74$	
18	96.49		43	74.29		68.	$38 \cdot 10$	
19	95.44		44	73.07		69	36.45	
20	$95 \cdot 36$	101.54	45	71.83	101.93	70	34.80	102.40
21	94.74		46	70.57		71	$33 \cdot 12$	
22	94.09		47	69.29		72	31.43	
23	98.41		48	67.99		73	29.74	
24	92.70		49	66.66		74	28.04	

One second of time, at the Bquator $=1521 \cdot 3$ feet, or 507 yards.
Puissant, calculating the compression from the measurement of the great arc in France, obtains different results on different sides of the Meridian of Paris, making it as low as ${ }_{230}{ }^{1} 0$ on the side of the Atlantic, and $\frac{1}{569}$ to the Bastward; which latter quantity is generally assumed on the Continent.

TABLE XVI.

CORRECTIONS FOR CURVATURE AND REFRACTION.

Showing the difference of the Apparent and True Level in Feet, and Decimal parts of Feet, for Distances in Peet, Chains, and Miles.

	Correction in Feet.				Correction in Peet.				Correction in Peet.		
100	24	000	00020	1.0	-00010	-00001	-00009		. 0417	. 0060	-0357
150	-00054	-00008	-00046	1.5	-00024	-00003	-00021		-1668	-0238	-1430
200	-00096	00013	-00083	2.0	-00042	-00006	-00036	電	-3752	-0536	- 3216
250	- 00149	00021	-00128	$2 \cdot 5$	-00065	-00009	-00056	1	-6670	-0953	. 5717
300	-00215	00081	-00184	3.0	-00094	-00013	-00081	$1 \frac{1}{2}$	1.5008	- 2144	$1 \cdot 2864$
350	-00293	- 00042	-00251	$8 \cdot 5$	-00128	-00018	-00110	2	$2 \cdot 6680$. 8811	2.2869
400	- 00383	-00055	-00328	$4 \cdot 0$	-00167	00024	-00143	21	4.1688	. 5955	3.5783
450	-00484	00069	- 00415	$4 \cdot 5$	-00211	-00030	-00181	3	6.0030	-8561	$5 \cdot 1469$
500	-00598	- 00085	-00513	$5 \cdot 0$	-00261	-00037	-00224	$3 \frac{1}{4}$	8-1708	$1 \cdot 1673$	7.0035
550	- 00724	- 00103	-00621	$5 \cdot 5$	-00315	00045	-0270	4	10.6720	1.5246	$9 \cdot 1474$
600	- 00861	-00123	-00738	6.0	-00375	00054	00321	$4 \frac{1}{8}$	13.5468	1.9295	11.5773
650	- 01010	-00144	00866	6.5	-00440	-00063	-00377	5	16.6750	$2 \cdot 3821$	14.2929
700	- 01172	-00167	. 01005	$7 \cdot 0$	-00511	00073	-00438	$5 \frac{1}{2}$	20.1769	$2 \cdot 8824$	17.2945
750	-01345	-00192	. 01153	$7 \cdot 5$	-00586	00084	-00502	6	24.0120	$3 \cdot 4303$	$20 \cdot 5817$
800	- 01531	- 00219	-01312	8.0	-00667	00095	-00572	61	28-1809	4.0258	$24 \cdot 1551$
850	-01723	-00247	-01481	$8 \cdot 5$	-00753	00108	00645	7	32.6830	$4 \cdot 6690$	28.0143
900	-01938	- 00277	-01661	$9 \cdot 0$	-00844	00121	-00723	$7 \frac{1}{8}$	37.5190	$5 \cdot 3599$	32-1591
950	- 02159	-00308	-01851	$9 \cdot 5$	-00940	-00134	-00806	8	$42 \cdot 6880$	6.0997	36.5883
1000	-02392	- 00333	-02059	$10 \cdot 0$	-01042	00149	-00893	81	$48 \cdot 1910$	6.8844	41.3066
1050	- 02638	00377	-02261	$10 \cdot 5$	-01149	00164	-00985	9	54.0270	$7 \cdot 7181$	46.3089
1100	- 02895	00414	- 02481	11.0	-01261	00180	01081	91	60.1971	$8 \cdot 5996$	51.5975
1150	-03164	-00452	-02712	$11 \cdot 5$	-01378	-00197	-01181	10	66.7000	$9 \cdot 5286$	57-1714
1200	-03445	-00492	-02953	$12 \cdot 0$	-01501	-00214	-01287	11	80.7070	11.5296	69-1774
1250	-03738	-00534	-03204	12.5	-01628	-00233	-01395	12	96.0480	$13 \cdot 7211$	82.3269
1300	-04043	-00578	-03465	13.0	-01761	-00252	. 01509	13	112.7230	16-1033	96.6197
1350	. 04361	-00623	-03738	$13 \cdot 5$	-01899	-00271	- 01628	14	130.7320	18.6760	112.0560
1400	-04689	- 00670	-04019	$14 \cdot 0$	-02043	-00292	-01751	15	$150 \cdot 0750$	$21 \cdot 4393$	128.6357
1450	-05030	- 00719	-04311	14.5	-02191	-00313	-01878	16	$170 \cdot 7520$	$24 \cdot 3931$	146.3589
1500	-05383	- 00769	-04614	15.0	-02345	-00335	- 02010	17	192-7630	27-5376	165.2254
1550	-05748	-00821	-04927	15.5	-02504	-00358	- 02146	18	216-1086	$30 \cdot 8727$	$185 \cdot 2359$
1600	-06125	- 00875	-05250	16.0	-02668	-00381	-02287	19	$240 \cdot 7870$	34-3981	206.3889
1650	-06514	-00931	-05583	$16 \cdot 5$	-02837	-00405	-02432	20	266-8000	38-1143	228.6857
1700	-06914	-00988	-05926	17.0 17.5	-03012	-00430	$\text { - } 02582$				
1750	-07327	-01047	-06280	$17 \cdot 5$	-03192	-00456	. 02736				
1800	-07752	$\bigcirc 01107$	-06645	$18 \cdot 0$	-03377	-00482	-02895				
1850	-08188	-01170	-07018	$18 \cdot 5$	-03567	-00509	-03058				
1900	-08637	$\cdot 01234$	-07403	18	-03762	-00537	03225				
1950	.09098	-01300	.07798	19.5 20.0	-03963	-00566	.03397				

R 2

TABLE XVII.

REDUCTION IN LINES AND DECIMALS UPON EACH CHAIN'S LENGTH FOR THE FOLLOWING VERTICAL ANGLES.

Angle.	Reduction.	Angle.	Reduction.	Angle.	Reduction.	Angle.	Reduction.
$8{ }^{\circ} \mathrm{O}$	$\cdot 137$	715	-800	${ }^{\circ} 1145$	$2 \cdot 095$	${ }_{16} 16$	3.874
315	-161	730	-856	120	$2 \cdot 185$	1615	3.995
830	-187	745	$\cdot 913$	1215	2.277	1630	$4 \cdot 118$
345	-214	80	-973	1230	$2 \cdot 370$	1645	4.243
40	-244	815	1.035	1245	$2 \cdot 466$	170	4.370
415	-275	830	1.098	130	2.553	1715	4.498
430	-308	845	1-164	1315	$2 \cdot 662$	1730	$4 \cdot 628$
445	-343	90	1-231	1330	2.763	1745	4.760
50	-381	915	1.300	1345	2.866	180	4.894
515	-420	930	1.371	140	2.970	1815	5.030
530	$\cdot 460$	945	1.444	1415	8.077	1830	5-168
545	-503	100	1.519	1430	$3 \cdot 185$	1845	$5 \cdot 307$
60	-548	1015	1.596	1445	3.295	190	$5 \cdot 448$
615	-594	1030	1.675	150	$3 \cdot 407$	1915	5.591
630	-643	1045	1.755	1515	$3 \cdot 521$	1930	5.736
645	-693	110	1.837	1530	$3 \cdot 637$	1945	5.882
70	$\cdot 745$	1115 11	1.921 2.008	1545	3.754	200	6.031

TABLE XVIII.

RATIO OF BLOPES FOR THE FOLLOWING VERTICAL ANGLES.

Angle.	To one perpendicular.	Angle.	To one perpendicular	Angle.	To one perpendicular	Angle.	To one perpendicular.
${ }_{0}^{\circ} \mathrm{O}$ 1'5	229	3 35	16	88	7	${ }^{\circ} \mathrm{P}{ }^{2} 26$	3
080	115	849	15	845	61	1959	$2{ }^{8}$
045	76	46	14	927	-	2148	21
10°	57	424	13	952	5	2358	$2 \ddagger$
115	46	445	12	1018	51	2634	2
130	39	50	111	1047	54	2944	$1{ }^{1}$
145	33	512	11	1119	5	3342	11
20	28	527	101	1153	4 4	3840	14
215	25	542	10	1232	$4 \frac{1}{1}$	450	1
230	23	60	91	1315	41	538	3
245	21	621	9	142	4	6328	1
30	19	643	81	1455	88	7558	4
315	18	77	8	1556	31	7841	$\frac{1}{3}$
328	17	736	$7 \frac{1}{1}$	176	34		5

TABLE XIX.

COMPARATIVE SCALE OF FAHRENHEIT'S, REAUMUR's, AND THE

 CENTESIMAL THERMOMETERS.| Fah. | Reau. | Cent. | Pah. | Reau. | Cent. | Pab. | $\begin{gathered} \text { Rean. } \\ + \end{gathered}$ | $\begin{gathered} \text { Cent. } \\ + \end{gathered}$ | Fah. | $\begin{gathered} \text { Reau. } \\ + \end{gathered}$ | Cent. $+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\circ}{\circ}$ | 14.2 | 17.8 | $\stackrel{\circ}{25}$ | ${ }_{3 \cdot 1}^{\prime \prime}$ | 3•9 | $\begin{gathered} \circ \\ 50 \end{gathered}$ | $8 \cdot 0$ | $10 \cdot 0$ | $\stackrel{\circ}{75}$ | $19 \cdot 1$ | 23.9 |
| 1 | 13.8 | 17.2 | 26 | $2 \cdot 7$ | $3 \cdot 3$ | 51 | 8.4 | $10 \cdot 6$ | 76 | $19 \cdot 6$ | 24.4 |
| 2 | 13.3 | 16.7 | 27 | $2 \cdot 2$ | $2 \cdot 8$ | 52 | $8 \cdot 9$ | 11.1 | 77 | $20 \cdot 0$ | $25 \cdot 0$ |
| 3 | 12.9 | 16.1 | 28 | 1.8 | $2 \cdot 2$ | 53 | $0 \cdot 3$ | 11.7 | 78 | $20 \cdot 4$ | $25 \cdot 6$ |
| 4 | 12.5 | $15 \cdot 6$ | 29 | $1 \cdot 3$ | 17 | 54 | $9 \cdot 8$ | $12 \cdot 2$ | 79 | $20 \cdot 9$ | 28.1 |
| 5 | 12.0 | 15.0 | 30 | 0.9 | $1 \cdot 1$ | 55 | 10.2 | $12 \cdot 8$ | 80 | 21.3 | 26.7 |
| 6 | 11.6 | 14.4 | 31 | $0 \cdot 4$ | 0.6 | 56 | 10.7 | $13 \cdot 3$ | 81 | 21.8 | 27.2 |
| 7 | $11 \cdot 1$ | 13.9 | 32 | 0.0 | $0 \cdot 0$ | 57 | 11.1 | 18.9 | 82 | 22.2 | 27.8 |
| 8 | 10.7 | $13 \cdot 3$ | 33 | ${ }_{0}^{+}$ | $\stackrel{+}{0.6}$ | 58 | $11 \cdot 6$ | 14.4 | 83 | 22.7 | 28.3 |
| 9 | 10.2 | 12.8 | 34 | 0.9 | 11 | 59 | 12.0 | 15.0 | 84 | $23 \cdot 1$ | 28.9 |
| 10 | 9.8 | 12.2 | 35 | $1 \cdot 3$ | 1.7 | 60 | $12 \cdot 4$ | 15.6 | 85 | $23 \cdot 6$ | $29 \cdot 4$ |
| 11 | $9 \cdot 3$ | 11.7 | 36 | 1.8 | $2 \cdot 2$ | 61 | 12.9 | $18 \cdot 1$ | 86 | 24.0 | 30.0 |
| 12 | 8.9 | 11.1 | 37 | $2 \cdot 2$ | $2 \cdot 8$ | 62 | $18 \cdot 3$ | 16.7 | 87 | $24 \cdot 4$ | $30 \cdot 6$ |
| 13 | 8.4 | 10.6 | 38 | $2 \cdot 7$ | $3 \cdot 3$ | 63 | 13.8 | 17.2 | 88 | $24 \cdot 9$ | 31-1 |
| 14 | 8.0 | 10.0 | 39 | $3 \cdot 1$ | $3 \cdot 9$ | 64 | 14.2 | 17.8 | 89 | $25 \cdot 3$ | 31.7 |
| 15 | 7.6 | $9 \cdot 4$ | 40 | 8.6 | $4 \cdot 4$ | 65 | 14.7 | $18 \cdot 3$ | 90 | $25 \cdot 8$ | 32-2 |
| 16 | $7 \cdot 1$ | 8.9 | 41 | $4 \cdot 0$ | 5.0 | 66 | $15 \cdot 1$ | 18.9 | 91 | 26.2 | 32.8 |
| 17 | 6.7 | 8.3 | 42 | 4.4 | $5 \cdot 6$ | 67 | 15.6 | $19 \cdot 4$ | 92 | 26.7 | $33 \cdot 3$ |
| 18 | 6.2 | $7 \cdot 8$ | 43 | $4 \cdot 9$ | 6.1 | 68 | 16.0 | $20 \cdot 0$ | 93 | 27.1 | $33 \cdot 9$ |
| 19 | $5 \cdot 8$ | 7.2 | 44 | $5 \cdot 3$ | 6.7 | 69 | 16.4 | $20 \cdot 6$ | 94 | 27.6 | 34.4 |
| 20 | $5 \cdot 3$ | 6.7 | 45 | 5.8 | 7.2 | 70 | 16.9 | $21 \cdot 1$ | 95 | 28.0 | $35 \cdot 0$ |
| 21 | 4.9 | 6.1 | 46 | 8.2 | 7.8 | 71 | 17.3 | 21.7 | 96 | $28 \cdot 4$ | 35.6 |
| 22 | 4.4 | 5.6 | 47 | 6.7 | $8 \cdot 3$ | 72 | 17.8 | $22 \cdot 2$ | 97 | 28.9 | 36.1 |
| 23 | 4.0 | 5.0 | 48 | $7 \cdot 1$ | 8.9 | 73 | 18.2 | 22.8 | 98 | $29 \cdot 3$ | 36.7 |
| 24 | 3.6 | 4.4 | 49 | 7.6 | $9 \cdot 4$ | 74 | 18.7 | $23 \cdot 3$ | 99 | $29 \cdot 8$ | 37.2 |

The following formula will serve for the comparison of these Thermometers.

$$
\begin{aligned}
& \mathbf{F}=\xi \mathbf{C}+32=9 \mathbf{R}+32 \\
& \mathbf{C}=8(\mathbf{F}-32)=3 \mathbf{R} \\
& \mathbf{R}=8(\mathbf{F}-32)=3 \mathbf{C}
\end{aligned}
$$

	Freesing point.	Boiling point.
Pahrenheit	32°	212°
Reaumur	0	80
Centigrade	0	100

The Logarithms answering to every degree of the graduations of the above Thermometers will be found at page 296, vol. i., of Dr. Pearson's "Practical Astronomy."

TABLE XX.

COMPARATIVE SCALE OF BAROMETERS.

Bnglish.	French.		
Inches.	Inches.	Lines.	Millimetres.
29.0	27	$2 \cdot 58$	$786 \cdot 6$
$29 \cdot 1$	27	$8 \cdot 65$	$739 \cdot 1$
$29 \cdot 2$	27	4.78	741.7
29.3	27	$5 \cdot 90$	744.2
29.4	27	$7 \cdot 03$	746.8
29.5	27	$8 \cdot 16$	$749 \cdot 3$
$29 \cdot 6$	27	$9 \cdot 28$	751.8
29.7	27	10.41	754.4
29.8	27	11.53	756.9
$29 \cdot 9$	28	0.66	759.5
$30 \cdot 0$	28	$1 \cdot 79$	762.0
30.1	28	2.91	764-5
$30 \cdot 2$	28	4.04	$767 \cdot 1$
$30 \cdot 3$	28	$5 \cdot 16$	769.6
30.4	28	6.29	772.2
30.5	28	$7 \cdot 42$	774.7
$80 \cdot 6$	28	8.55	$777 \cdot 3$
30.7	28	$9 \cdot 67$	$779 \cdot 8$
$80 \cdot 8$	28	$10 \cdot 80$	782.3
30.9	28	11.93	784.8
31.0	29	1.05	$787 \cdot 4$

TABLE XXI.

FORM FOR REGISTERING DALLY METEOROLOGICAL OBSERVATIONS.

	Barometer.						Thermometer.			Wet thermo- meter. P.M. 2	Self-registering thermometer.		$\begin{aligned} & \text { Rain } \\ & \text { gange. } \end{aligned}$	Bemarks, including the direction and force of winds, nature of clouds (cumulus, cirrus, \&c.), and all remarkable atmospheric phenomena.
	- Height.			Temp. of Mercury.										
	$\begin{gathered} \text { A.M. } \\ 8 \end{gathered}$	P.M. 2	P.M. 8	A.K.	$\underset{2}{\text { P.M. }}$	$\begin{gathered} \text { P.M. } \\ 8 \end{gathered}$	A.M.	$\underset{\mathbf{2}}{\mathbf{P . M .}}$	$\begin{gathered} \text { P.M. } \\ \mathbf{8} \end{gathered}$		Max.	Min.	Inches.	
$\begin{aligned} & \text { 1st } \\ & \text { 2nd } \\ & \text { 3rd } \end{aligned}$	30-136	30•102	30.024	59	62	60	61	66	63	58	68	53	0.53	

[^106]
DESCRIPTION OF THE PEDIOMETER AND COMPUTING SCALE.

These instruments are used for determining the areas of Plans without calculation-whereby a saving is effected of more than half the time consumed in computation, and the liability to error is very materially diminished.

THE PEDIOMETER.

The instrument consists of a square, and a graduated scale, constructed for three chains to the inch.
a-The milled head, by turning which, motion is given to the brass slider B, and the two pointers R and W.

I-The index to be placed in coincidence with the - division upon the scale.

When the brass slider B is in contact with A, I coinciding with - division, and R and W pointing to O upon their respective scales, the instrument is in adjustment.

When deranged, restore it, by opening R and W to the proper distance, and then moving A and I, the former into contact with B, and the latter into coincidence with I

Required the content of the trapezium ECFD.
lst.-Place the edge A upon the point E, and open B to the point F.

2nd.-Press the square firmly down with the right hand, and with the left place the scale against the edge of it, as shown in the figure.

3rd.-Now press the scale firmly, and slide the square up, until the edge $A B$ is upon the point C.

4th.-Press the square firmly, and slide the scale against its edge until - coincides with I.

Finally.-Press the scale and slide the square down until the edge $A B$ is upon the point D, and taking out the numbers to which W and R point, subtract the latter from the former, and the contents in acres and decimal parts of an acre will at once be given.

The red pointer directs to the numbers that are to be taken from the red scale, and the white one, to those upon the white scale.

When the pointers fall exactly upon the line engraved on the ivory edge of the scale, the folding leaf is to be doubled down to the left hand; butt when the pointers fall between any two of the lines on the ivory edge, the folding leaf must then be doubled over to the right hand before the numbers are read off.

For instance, when the leaf is turned to the left and the red pointer falls between the two lines which refer to $\cdot 008$ and $\cdot 013$, turn the folding leaf to the right hand, and the pointer will read 0.10.

It will be found most convenient and most accurate in practice to take the shortest diagonal for the line E F.

This instrument answers the same purpose of giving mechanically the contents of enclosures as the Pediometer, but is more simple in its construction and principle of operation.

It consists of a scale divided for its whole length from the zero point into divisions, each representing $2 \frac{1}{2}$ chains, and is used with a sheet of transparent tracing paper, ruled with parallel lines at equidistant intervals of one chain.

The slider B, which moves along the scale, has a wire drawn across its centre at right angles to its line of motion; and on each side of this wire a distance equal to one of the primary divisions of $2 \frac{1}{2}$ chains is laid off, and divided into 40 parts. It is evident, then, that during the passage of the slider over one of the divisions of $2 \frac{1}{2}$ chains, one rood has been measured between two of the parallel lines on the tracing paper; and that one of the smaller divisions would measure between the same parallels one perch. Four of the larger divisions give one acre ; and the scale itself, generally made long enough to measure at once five acres, is thus used. Lay the transparent paper over the enclosure the content of which is required, in such a position that two of the ruled lines shall touch two of the exterior points of the boundaries, as at a and b.

Lay the scale, with the slider set to zero, over the tracing paper, in a direction parallel to the lines, and so placed that the portions c and d are estimated by the eye as equal to each other. Holding the scale steady, move on the sliding frame until the equality of the portions e and f are also estimated. With the slider kept at this mark, move the scale bodily down the' space of one of the ruled lines (one chain), and commencing again at the left hand, estimate the equal areas of g and h, sliding the frame on to k and l. When the whole length of the scale, denoting 5 acres, is run out, commence at the right-hand side, and work
backwards to the left, reading the lower divisions, by which the instrument is made to measure up to 10 acres. By a continuation of this process, the contents of any sized enclosures can

be obtained without calculation, and with sufficient accuracy for general purposes, if the scale is tolerably large. It would, however, expedite the measurement if the tracing paper was divided into squares of one chain each; the application of the computing scale need then only be made to the portions outside the squares, and the content added to that of the squares themselves, which is obtained by simply counting them. Where the wire of the slider coincides with any portion of the boundary between two of the parallels no equalization is of course neces. sary.

* Should not be less than 1 inch to 1 mile, excepting where a considerable distance has to be aketched, and the country is very open.

This form is nearly similar to that used by the Quartermaster General's department in the Peninsula. Where more information is required to be tabulated, columns can be added; but generally it is better to embody all other statistical details in the Report that accompanies the sketch of the road. On a hasty reconnaissance, the object of which is principally to ascertain the practicability of any route for different arms of the service, the five last columns can be omitted. In a sketch of this nature, the Road is evidently the feature of paramount importance, and the ground contiguous to it is only of material consequence in those spots that present positions for disputing its passage or embarrassing its free occupation. In calculating the number of men a village or hamlet would contain for one night, five men may be allowed per house; for a longer period a considerable reduction must be made. In the country the best guides from whom to obtain information are obviously those who, from their pursuits, must be possessed of much local knowledge, such as shepherds, pedlars, poachers, \&c. In towns, reference should be made to the local authorities for all statistical information. In addition to the field sketch of the road, a few outline sketches of the principal marked positions, with references to the spot from which they were taken, would often prove of great service. These positions would, if of importance, require a separate sketch and report.

When the routes for different columns to arrive at any fixed spot at any required time have been decided upon, separate sketches of the ground will be requisite for their guidance. The annexed form for the "Detail of March" is taken from Captain Macauley's "Treatise on Field Fortifications."

[^107]-

Digitized by GOOgle

-

39015087185788

[^0]: Royal Engineer Establishment, Chatham, 1839.

[^1]: * A spiral spring, something like that used in weighing-machines, is attached to the end of a chain used for purposes requiring much accuracy ; this indicates the power of tension exorted, which should always be the same as when compared with the atandard. The surreyors under the Tithe Commission Act are furnished with this contrivance.

[^2]: *The deal rods were first laid, as it is termed, "in coincidence;" that is, lines drawn across them, near their extremities, were made to coincide most accurately by fine screws,
 their spherical ends were afterwards brought in contact \square and the measurement was continued in this manner, so that no decision was arrived at as to the comparative accuracy of the two modes; that by coincidence would, however, appear likely to be more minutely correct than the one adopted.

 + Many years after the lat edition of this work; the ahort popular description of the process of using the bars is however retained.

[^3]: *This was the usnal distance between the foci of the microscopes; but to meet casces where the uneven surface rendered it difficult to bring the short bars to a level at this distance, it was sometimes diminished to one half. Microscopes of different lengthe were used where the inclination of the ground rendered it necessary to lay the boxes on different levels, so that the platina dots might be brought in the focus of each microscope. The old base of verification on Salisbury Plain has recently been remeasured with these compeneation bara.

[^4]: * "Becueil des Observationa G6́odesiques, par Biot et Arago"-" Puissant, Traité de GEodesie "-" Base du Système Métrique decimal;" and the works of Cassini, Prancceur, Colonel Lampton, \&c.

 The bases of the original arc of Mechain and Delambre, described in the "Base du Système Métrique," were measured with rods of platinum two toises long; to each bar was attached at one end a rod of brass. The proportion of the expansion of brass and platinum being known, the expansion of the platinum rod was inferred from the observed difference of expansion of the two rods. The rods were laid in boxes, and placed on trestles ; and their ends not brought into contact, bat measured with a slider. The temperature was reduced to thirteen degrees of Reaumur. The length of the base of Perpignan was 6006.28 toises; and that of Melon 6075.9 toises. The calculation of the Perpignan base of verification from that of Melun differed only eleven inches from its actual measurement on the ground.

 These platinum bars are described in page 203, vol. i. Puissant's "Géodesie." Few bases have ever been measured solely for the determination of the value of an arc of the meridian, or of a parallel, but have formed at the same time the foundations of the survey of a country.

[^5]: - "Laplace a demontré par le calcul des probabilites qu'il ne faut employer que le moins grand nombre possible de triangles du premier ordre courrant l'étendue entiere du paya, en leur donnant les plus grandes dimensions permises par les localités, et par la puissance des lunettes des instruments." Francoerr, "Geodesic," page 110.

 The distances between some of the trigonometrical points on the Ordnance Survey of Ireland exceed 100 miles, and have been deduced from the original base of about 10 milea. Observations may be made on a station which would be hid by intervening high ground were it not elevated above its real place by refraction, but periods should always be chosen for observing angles when extraordinary refraction is not remarkable, on account of its rery irregular action.

[^6]: * It is also eminently calculated for those lighthouses where powerful illamination is required. In the "Philosophical Transactions" for 1880 is a paper of Captain Drum-

[^7]: - The large class of theodolites used upon an accurate triangulation require some protection from the weather. Light portable frame-work erections, covered with canvas, or boarding, are used on the Ordnance Survey. - See the article "Observatory Portable" in the Aide Mémoire.

[^8]: * For a detailed account of this instrument, which is so seldom met with in Rngland, see pages 89 to 99, "Géodeaie, par Prancour;" also page 142, vol. i. "Puiseant, Géodesie." There is aleo a very able paper upon the nature of the repeating circle by Mr. Troughton in the first volume of the Memoirs of the Astronomical Society.

 The portability of this instrument is one of ite great recommendations; but it seems to be always liable to some constant error, which cannot be removed by any number of repetitions, and the causes of which are still unknown. With all the skill of the most careful and scientific observers, the repeating circle has never been found to give the accurate results expected from it, though in theory the principle of repetition appears calculated to prevent almost the possibility of error.

 + This will be evident from the figure below, taken from page 220 of Woodhouse's Trigonometry.

[^9]: * For the investigation and application of these formulæ, see vol. i. "Puiseant, Traite de Géodesie," page 174; "Géodesie, par Prancœeur," pages 128 and 435; and Dr. Pearson's " Practical Astronomy," vol. ii. page 505. Hutton's formula is the same, except that it is expressed in terms of the altitude instead of the zenith distances. See also Woodhouse's "Trigonometry," page 220, and the corrections to the observed angles in the first volume of the " Base Métrique."

[^10]: " R^{n} may be considered identical with $\frac{1}{\sin 1^{\prime \prime}}$. See "Puissant," vol. i. page 100.

 + Woodhouse arrives at the same result at the termination of a long investigation of this correction.-"Trigonometry," page 229.

[^11]: - Instead of deducing the angle at the station on which the instrument cannot be ret up from that observed at any apot convenient to it, it is often found more expoditious, particularly if there are many observations made, to correct the other angles of the triangles; this latter method is generally now practised on the Ordnance Survey.
 $+\Delta_{n}$ instrument of the same size has since been made by Mesars. Troughton and Simms for the survey of India, as also another for the Ordnance Surves. A theodolite of 18 inches diameter upon a repeating stand was constructed by General Mudge, with an idea of its superseding the larger theodolite, the weight and size of which rendered its carriage an affair of difficulty; but the advantage of repetition (so desirable in single observations) poscesced by moderate sized instruments does not appear to compensate for the diminished sise of the circumference of the horizontal circle. Theodolites of $24,18,12,10,9$, and 8 inches diameter are also used on the Ordnance Survey, as well as those of smaller dimensions, of 7 and 5 inches.

[^12]: * Platinum wire is the best adapted for the parpose, though cobwebs are generally used by surveyors; and as they are liable to break from the alightest touch, it is necessary that every person using a theodolite should be able to replace them himself. They must be stretched tight across the diaphragm, and confined in their places (indicated by faint notches on the metal) by gum, or varnish, the latter of which is to be preferred on account of its not being affected by the humidity of the atmosphere. The following simple and ingenious mode of fixing these cobwebs, which to a novice is often a difficult and tedions operation, was mentioned to me by Mr. Simms, who constructs all the mathematical and astronomical instruments for the Ordnance Survey. A piece of wire is bent into a shape something like a fork, the opening $a b$ being rather larger than the diameter of the diaphragm. Δ cobweb
 being selected, at the extremity of which a spider is suspended, it is wound round the fork in the manner represented in the sketch, the weight of the insect keeping it constantly tight. The web is thus kept atretched ready for use; and when it is required to fix on a new hair, it is merely necessary to put a little gum or varnish over the notches on the diaphragm, and adjust one of the threads to its proper position.

[^13]: - On the aximath circle of the large theodolite used on the triangulation of the Ordnance Survey, the original verniers were only at the two opposite points \mathbf{A} and B, the mean of the readings at which were, of course, always taken. Subsequently, the verniers at C and D were added, each of them equidistant 120° from A, and also from each other. It has since been sometimes the custom, first to take the mean of Δ and B, and afterwards the mean of ΔC and D, and to consider the mean between these two valuations as the true reading of the angle ; this me-
 thod has, however, been objected to as being incorrect in principle, an undue importance being given to the reading of the vernier A, and also in a smaller degree to B. The influence assigned to each vernier is, in fact, as follows:-A.5;B.3; C and D, 2 each.

[^14]: * Great assistance is derived from a rough diagrann representing the proposed method of proceeding, with references to the marks left on the measured sides of the triangles to be subsequently connected by check lines, either joining two sides, or extending from one side to the opposite angle; this may appear at first to be a waste of time, but it will soon be found to be the contrary, as the lines will be all run in directions advantageous to the fillingup of the interior. These marks should be made on the ground, so as to be easily recognised, and should be copied in the margin of the field-book.
 \dagger Very excellent instructions for the guidance of surveyors employed in forming plans of estates and parishes are to be found in the report from Captain Dawson, Boyal Engineers, to the Tithe Commissioners of England and Wales, November, 1836, from which report Mr. Bruff, in his " Fingineering Field-book," has extracted a number of valuable directions.

[^15]: * Among the advantages of connecting a well-arranged series of levels with the plan of any portion of country, is that of rendering it at once available to the engineer in selecting the best trial lines for railroads or canals. The present system of tracing horizontal contour lines at short vertical intervals, instead of sketching the features of the ground, which used to be practised on the Ordnance Survey, affords not only the means of deciding upon the best trial lines, but actually furnishes data for constructing accurate sections across the country in any direction.

[^16]: ＊The reduction marked on the reverse of the inatrument can be made in the field by drawing the chain forward the stated number of links．It is，however，generally the prac－ tice at present upon the Ordnance Survey，to measure horizontal distances at once upon the ground，using in steep slopes only short portions of the chain，by which means all reductions and subsequent calculations are avoided．The forms given above and many of the directions are taken from the original instructions for the Interior Survey of Ireland．

[^17]: *The readiest way of plotting lines whose directions have all reference to one meridian is by the use of a circular pasteboard protractor, with the centre cut out. A parallel ruler or angle (if the angle and ruler be preferred) is stretched across its diameter to the opposite corresponding angle, the zero having been first laid on the meridian line and moved forward to the point from whence the bearing is to be drawn. For surveys on a very large scale, bowever, the semicircular brass protractor, with a vernier, is better adapted and is more accurate.
 \dagger The contents even of the fields and other inclosures can be calculated from the fieldbook; but if the parishes and larger figures are so determined, the minute subdivisions of the interior may be taken from the plan. On the Ordnance Survey of Ireland, the number of acres in the different parishes, baronies, \&c., were calculated, as also those covered by water, and given in a table accompanying the "Index Map" of each county; but the contents of the fields were not computed, though the hedges and other inclosures are shown on the plot. The contents of inclosures can be very quickly ascertained from the plan, by drawing lines in pencil about one or two chains distant, across the paper, both longitudinally and trans-

[^18]: versely, or by laying a piece of transparent paper so ruled over it; the number of squares in each field are then counted, and the broken portions either estimated by the eye or reduced to triangles for calculation.

 The "computing scale," upon a principal similar to the pediometer described at the end of this work, also affords the means of ascertaining mechanically the acreage of inclosures divided into triangles or trapeziums. It has been for many years in use at the Tithe Commission Office, for the purpose of calculating and checking the contents of plans surveyed under the Act of Parliament, and is productive of a great saving of time, as well as insuring considerable accuracy. The principle of the construction of the pediometer depends upon the following equation, combined of the sum and difference of a diagonal of the trapezium and the two perpendiculars. Let a represent the diagonal, and b the sum of the two perpendiculars; then the area $\frac{a b}{2}=\frac{\left(\frac{1}{2} a+\frac{1}{2} b\right)^{2}-\left(\frac{1}{2} a-\frac{1}{2} b\right)^{2}}{2}$.

[^19]: * From one to two chains should be the maximum length of offisets where the contents of - inclosures are to be computed, or even laid down on a large scale. These limits must of course be extended in filling in the interior in less accurate surveys, or which are to be plotted on a very small scale. As drawing-paper is very much atretched when mounted on a board, and partially contracts when cut off, and as it is always liable to change from the

[^20]: atmosphere, it is a good precaution to divide the scale for laying off distances from the fieldbook, on the paper upon which the plot is to be made, as it will then always expand and contract with the outline of the survey; and also to mount the paper before commencing plotting, or not at all.

[^21]: " Mr. Holtzapfell's " Engine-divided Scales," engraved on pasteboard, will be found very useful, and their low price is an additional recommendation. Marquois scales are also adapted for plotting and drawing parallel lines at measured intervals, as well as for other purposes. The offset and plotting scales, introduced by Major Robe on the Ordnance Survey, are as

[^22]: convenient as any that have been contrived. The plotting scale has one bevelled edge; and the scale, whatever it may be, engraved on each side, is numbered each way from a zero line. The offiset scale is separate, and slides along the other, its zero coinciding with the line representing the measured distance; the dimensions are marked on the bevelled edge of this short scale to the right and left of zero, so that offsets on either side of the line can be plotted without moving the scales; and from the two being separate, there is no chance of their being injured, as in those contrivances where the plotting and offset scales are united.

 * See Colonel Beaufoy's experiments on the variation of the needle. Also the article Observatory (Magnetical), Aide Mémoire.

[^23]: - In using reflecting instruments, avoid very acute angles, and do not select any object for observation which is close, on account of the parallax of the instrument. The brightest and best defined of the two objects should be the reflected one; and if they form a very obtuse angle, it is measured more correctly by dividing it into two portions, and observing the angle each of them makes with some intermediate point. Also, if the objects are situated in a plane very oblique to the horizon, an approximation to their horizontal angular distance is obtained by observing each of them with reference to some distant mark considerably to the right or left, and taking the difference of these angles for the one required.

 The index error of a sextant must also be frequently ascertained. The measure of the diameter of the sun is the most correct method; but for a box sextant, such as is used for aketching, it is sufficient to bring the direct and reflected image of any well-defined line, such as the angle of a building (not very near) into coincidence-the reading of the graduated line is then the index error. For the adjustment of the box sextant, see Simms on Mathematical Instruments. The less the glasses are moved about the better.

[^24]: * A straight walking-stick will be found very useful in sketching, not only for the purpose of getting in line between two objects, which is easily done by laying the stick on the ground, in the direction of one of them, and observing by looking from the other end to which side of the opposite station it cuts, but also for prolonging a line directed on any known point to the rear. A bush or any other mark, observed in the line of the stick, answers as well as another known point for pacing on.

[^25]: - It is almost needless to point out the incalculable advantages of being a good modern linguist to an officer employed on duty of this nature in an enemy's country.

[^26]: - Δ ford should not be deeper than three feet for infantry, four feet for cavalry, and two and a half for artillery and ammunition waggons.-Macauley's "Field Fortification." The nature of the soil at the bottom should always be ascertained, and also if it is liable to ahift, which is the case in a mountainous country.
 \dagger If actual differences of level cannot be determined for want of time, still relative command may be obtained, and numbered $1,2,3,8 c$. ., accordingly.

[^27]: - The present "Sabretache" is of little use on horseback, and on foot it is a mere incumbrance. It is most desirable that Officers of Engineers, and those attached to the Quarter-Master-General's department, on service, should be equipped with one of an improved pattarn, which might easily be arranged so as to answer for a portfolio and yketching case, and at the same time contain such acales and drawing instruments as are required by an officer employed upon an extensive reconnaissance.

[^28]: * A protractor (for want of a better) can be made by folding a square or rectangular piece of paper into three, which, when doubled, divides the edge into six portions of fifteen degrees each; these can be again divided into three parts, b ich angles of five degrees can be laid down, or even approximately observed, the intermediate degrees
 being judged by the eye.

[^29]: * Very good specimens of both these styles of sketching hills are to be found in Mr. Burr's "Practical Surveying." The vertical is best adapted to a military skete. pressed for time, as, however roughly it may be scratched down, a good general idea of the ground is conveged.

[^30]: *The geological part of the Ordnance Survey is now quite distinct from the geodesical.

[^31]: * See description of Dr. Brewater's micrometical telescope, in Dr. Pearson's Practical Astronomy, vol. ii.

[^32]: - About 1100 feet in one second. A light breeze will increase or diminish this quantity 15 or 20 feet in a second, according as its direction is to or from the observer. In a gale a considerable difference will arise from the effects of the wind. A common watch generally beats five times in one second. See "Philosophical Transactions," 1823. The number of pulsations of a man in health is about 75 per minute. Either of these expedients will serve as a sort of substitute for a seconds watch. The velocity of sound is affected by the state of the atmosphere, indicated by the thermometer, hygrometer, and barometer; according to Mr. Goldingham, $\frac{t}{0}$ of an inch rise in the barometer diminishes the velocity about 9 feet per second. Mr. Bailly rates the velocity of sound, at 32° Fair., at 1090 feet per second, and directs the addition of 1 foot for every degree of increase of temperature above the freezing point.

[^33]: - With a pocket or prismatic compase this operation may be more casily performed; by taking up a position on the prolongation of each face, and observing their inclination to the magnetic meridian, that of the line bisecting the salient, or the capital of the work, is at once known; for the mean between the two readinge will be the beacing of the salient when the obeerver is upon the capital; and by mearuring a base in a convenient situation, the distance may be readily found.

[^34]: - The amount of the correction for currature at different distances will be found by reference to the tables, and further remarks on Atmospheric Refraction in the chapter on the Definitions of Practical Astronomy.

[^35]: - Puiscant "Géodesie," vol. i. p. 342; and "Recherches sur les Réfractions Extraordinaires, par Biot." Also, the "Trigonometrical Survey," vol. i. p. 352.
 † Carr's " Synopeis of Practical Philosophy," articlea 'Levelling,' and 'Refraction.'

[^36]: - "Trigonometrical Survey," vol. i. p. 175. See also, on the subject of refraction, Woodhouse's "Trigonometry," p. 202.
 \dagger One degree of the earth's circumference is, at a mean valuation, equal to 365,110 feet, or $\mathbf{6 9 . 1 5}$ miles; and one second $=101.42$ feet.

[^37]: *The formuls given in the "Synopsis of Practical Philsosophy" is identical with this rule:-

 Befraction $=\frac{(A+E)-D}{2} ; E$ being the apparent elevation of any height $; D$ the apparent reciprocal angle of depression; and \mathbf{A} the angle subtended at the earth's centre by the distance between the stations.
 $+\Delta$ difference of opinion existe as to the zero from which all altitudee should be numbered. What is termed "Trinity datum" is a mark at the average height of high water at spring-tides, fixed by the Trinity Board, a very little above low-water mark at Sheerness. A Trinity high-water mark is also established by the Board at the entrance of the London Docks, the low-water mark being about 18 feet below this. Again, mome engineers reckon from low-water spring-tides; and at the rise of tide is much affected by local circumstancen, this latter must, in harbour, and up such rivers as the Severn, where the tide rises to an enormous height, be nearer to the general level of the sea. One rule given for obtaining the mean level of the sea, by reckoning from low-water mark, is to allow one-third of the rise of the tide at the place of observation.
 \ddagger At 206,265 feet distant, 1 foot subtends $1^{\prime \prime}$; or at one mile it subtends $39^{\prime \prime} \cdot 06$ nearly.

[^38]: - The dip of the horizon would be equal to the contained arc, when seen from objects on the spherical surface, if there were no refraction; which is therefore equal to the difference between the depression and the contained arc.
 \dagger In taking sections across broken irregular ground intersected by ravines, this aystem of operation is recommended, as being much more easy and rapid than tracing a series of short horizontal datum lines with the spirit level. Where, however, this latter instrument can be used with tolerable facility, it ahould alwaya be preferred.

[^39]: - Dr. Brewater's micrometrical telencope is described in Dr. Pearson's "Practical Astronomy," vol. ii. p. 235.
 Mr. Macneil atates that he has frequently nsed a scale of this kind attached to the eye: piece of his level.

[^40]: - Bruff's "Rngineer Field Work," page 122.
 † Marks on atumps of trees, mile or boundary stones, \&ce, or any convenient permanent object on which the staff is placed to obtain the comparative level of these intermediate points of reference. They are useful either for the subsequent laying out of the detail of work, or for comparison in running check or trial sections. Bench marks should be conspicuoualy marked and clearly described in the fiald-book, that no doubt may arise as to their identity.

[^41]: * Before adjusting the focus of the object-glass, that of the eye-piece should be always attended to, both in the spirit level and theodolite; it should be drawn ont till the cross wires are clearly defined, and there is no instrumental parallax; so that on fixing their interrection on some distant object there may be no displacement of the contact on moving the eye sideways to the right or left.

[^42]: - Also in page 187 of Mr. Braff"s "Engineering Field Work."

[^43]: *The instrument from which the aketch was made was constructed for me by an ironmonger in Chatham; and I have tried it against a very good apirit-level, and found the remits perfectly eatisfactory. This water-level is, I find, now constantly used on the Ordnance Survey for interpolating horizontal contours at vertical intervals of 25 feet between the more correct contours, traced at greater distences apart by the spirit-levol.
 \dagger These corks must be drawn carefully, and when the tube is nearly level, or the water will be ejected with riolence.

[^44]: * By having two assistants, with levelling-staves, one for the back and the other for the forward station, much time may be saved.

[^45]: - For more detailed instructions on the method of levelling for and plotting sections see Mr. Simms' work. Where very great accuracy is required, the level is always read over a second time, the instrument being thrown out of adjustment and readjusted-a certain amount of difference only is allowed-about 008 ft . Δ levelling staff, with an improved vane, is also used, instead of the now common staff without a vane.
 +Where only lineal distances or sectional areas are required, a chain of feet is the mont convenient for use, instead of the Gunter's chain used for determining superficial areas in acrea.

[^46]: - A separate column is often kept for "Bearings;" and instead of the bearings and distance between each staff, the angles with the meridian, and the distances are sometimes taken between the instrument and eack back and forroard sation; which arrangement nequires two columns for dintances, and two for bearings; or, instead of bearinge, angles may be taken to some known object.

[^47]: *The plotting scales, already alluded to, are very convenient for laying down sections; and Mr. Holtzapffell's cardboard Engine-Divided Scales will be found useful where a variety of acales are often required; from their method of construction, they can be sold at the low price of nine shillings a dozen, of all descriptions in general use.

[^48]: - Of the greatest possible consequence, both for the sake of avoiding unnecessary expense, and of laying out the work to the beat advantage, valuable information upon this subject will be found in Mr. Macneil's work.

[^49]: * These problems are taken from a paper on Contour Plans and Defilade, by Captain Earpees, extracted principally from the "MÁmorial du Génio."

[^50]: - irr. Howlett remarks that, in barometers where the bottom of the cistern is formed by a leather bag, the mercury should be forced up nearly to the top of the tube by the bottom screw, whilst the instrument is held upright. It should then be carefully inverted, in which position it muat always be carried. When required for use, it should again be placed upright before the pressure of the screw against the bag is relaxed ; otherwise the bag is liable to be burst.
 + It is doubtful if this is any advantage : a barometer of this kind takes a long time to adjunt and read; and as a tangent to the surface of the mercury is required, both in the tube and the cistern, there is more chance of error in the observation.

[^51]: *This correction, termed the "capacity," is generally ascertained by trial. A certain quantity of mercury is first poured into the tube, which it fills to the height, say of $14 \cdot 4$ inches: this same quantity is then transferred to the cistern, and found to rise $\mathbf{2}$ inch. The capacity is therefore as 14.4 to 2 , or 72 to 1 ; and this ratio is always marked by the maker on the instrument.

[^52]: * In Mr. Bailey's table, the column B is calculated on the supposition that the thermometer is always the highest at the lowest station, which in great altitudes will be the case; but as the barometer may be used with advantage in a comparatively flat country, this omission has been remedied in a table published by Mr. Howlett, in the "Professional Papers" of the Royal Engineers, from which the column B has been taken. The more accurate mahod is to correct the barometer for temperature, independently of the tables.

[^53]: * As a proof, however, that the results given by the barometer are not always to be depended upon when extended to very great distances, the observations consequent upon which occupy a considerable time; it may be mentioned that Professor Parrott who was employed in determining by barometrical measurement the level of the Black Sea above that of the Caspian, made this quantity by a series of the most careful simullaneous observations in 1811 exactly 300 feet; the same operation repeated by him in 1830 gave a result of only 3 or 4 feet. In 1837 this altitude was determined geodesically by the Russian Government to be 85.6 , and was afterwards made by a French observer between 60 and 70 feet.
 + In Mr. Jenes's Pamphlet the centigrade thermometer is expposed to be used (the comparison of which with Fabrenheit's is given in Table 19). The centigrade, or centeaimal thermometer, derives its name from the interval between freezing and boiling voater being divided into one hundred parts. It is adapted to the decimal system of measurement, and since the Revolution has been very generally used in France. Its zero, like that of Reaumuis, commences at the freesing point.

[^54]: - In this rule of Dr. Hutton's, as in Jones's tables, there is no correction for latitude. One of the latter, I have also been informed, is erroneous; but they will, at all events, give good approximate results, which is all that is generally required of the mountain barometer.

[^55]: *The very limited range of the instrument, as at present constructed-only 2.5 inches below 30°-confines its power of measuring altitudes to about 2000 feet above the sea.

[^56]: * A description of this instrument is given in the "Mechanics' Magaxine," for October, 1839.

[^57]: - I ascartained lately the approximate altitudes above the sea of a number of places in Australia by this method; many of these were afterwards tested by the triangulation, and the results proved even more satisfactory than I had anticipated.

[^58]: - Mr. Burr proposes an angle of about 15° for a flat country, and 40° for mountainous districts; the angle of oblique light ranging between these two extremes according to the nature of the ground.
 † Mr. Dawson, whose talents and energy have done 20 much towards bringing the sketching and shading plans of the Ordnance Survey to the present state of perfection, was the principal advocate of this system of oblique light; and some of the copies, from models of large tracts of country drawn by Mr. Carrington, at the Ordnance Map-office, in the Tower, are hardly to be distinguished from the models themselves, when they are both placed in the proper light.
 \ddagger These and the preceding remarks apply solely to shading with the brusk; the methods of delineating slopes by the pen and pencil having been explained in the last chapter. The Ordnance Surveys of the North of England are finished on this system for the engraver, even though the ground may have been instrumentally contoured. These maps, however, are at present engraved upon the same scale as those of the old surveys of the southern counties, 1 inch to 1 mile, though plotted upon that of 6 inches, in ordar to have the whole maps of Ringland uniform in scale and in execution.

[^59]: - For an explanation of the details of this opecies of surveying, see Mr. Kingston's Statements, page 83. Third Beport of the South Australian Commiseioners, 1838 ; and Captain Daweon's Report on the Survey of New Realand, 1640.

[^60]: * The size of the lots into which the township is to be divided may vary from a quarter of an acre to one acre; half an aere would be found generally sufficient. It is customary to give to the first purchasers of raral sections one town lot in addition for every such section, the remaining lots to be sold either by anction, or at nome fixed price.

[^61]: - In the Canterbury Settlement, on the Middle Island, New Zealand, 50 acres has been fixed as the minimum size; the maximum is unlimited; as in South Australia, no reservation is made of coal and other minerals; the purchaser being put in possession of all that is on and under the surface.
 \dagger The rude and inaccurate mode in which land has been marked out in Canada by the chain and compass, and the little value that has been set upon waste land which used to be alienated from the Crown in grants of extensive size, renders the survey of that country not a fair point of comparison with that of more modern colonies.

[^62]: * Two or three per cent. upon the average, is proved amply sufficient in small or moderate-sized sections. In very large blocks, one per cent. would perhaps be as much as could be required.

[^63]: - Partly extracted from the instructions issued to the surveyors employed in South Australia.

[^64]: *Two inches to one mile is found a very convenient scale for plans of these sections, intended for the information of the public.

[^65]: - A simple form adapted for this is given at the end of the Astronomical Tables.

[^66]: - This figure represents rectangular sections of 80 acres, as laid out in South Australia, the length of which bore to their breadth the proportion of 2 to 1 -occupation roads one mile apart, enclosing eight sections. They were, however, frequently laid out square, according to the nature of the ground.

[^67]: *These subsequent wants and demands do not affect the first stage of the survey in a new country; it is only as it becomes gradually settled that they are felt. The first survey evidently cannot be a complete one, unless it could embrace every acre of land that might by possibility be required; it is constantly demanding extension in every direction, therefore the more imperatively necessary is it, that the first land surveyed and laid down on the maps should be based upon a triangulation sufficiently accurate to allow of this extension, without the certainty of accumulating error.

[^68]: *This average has no reference to the first settlement of the province in 1838; it applies more particularly to the period between the yeara 1842 and 1848 inclusive.
 \dagger Occaaionally, under farourable circumatances, three times this average was produced for limited periode.

[^69]: * Formerly land used to be sold in South Australia at the uniform fixed price of $1 l$. per acre. The system of selling by auction was introduced by the Australian Waste Land's Act in the year 1843. There are various opinions as to the comparative merits of these opposite systems, the firat of which was introduced by Mr. B. G. Wakefield; and its advantages are strongly set forth in the pamphlet upon Colonial Surveying, recently published by his brother, Mr. F. Wakefield.

[^70]: *Mr. Tyers.

[^71]: * Expeditions for one single definite object, such as tracing the sources of a river, \&c., are not intended to be here referred to.

[^72]: * For the method of calculating the latitude from a meridian altitude, see chapter x. + See chapter $\mathbf{x i}$.

[^73]: * See chapter xi. on Practical Astronomy.
 + The distances between positions, the latitudes and longitudes of which have been determined, can be easily calculated in the manner described in the next chapter; by which means they can be laid down with more accuracy, if the extent of ground travelled over is not very great.
 \ddagger See chapter $\mathbf{x i}$.

[^74]: - The exact determination of arcs of the meridian measured in France, and also the comparison of the three portions into which the arc of the meridian between Clifton and Dunnose was divided, presenting the same anomaly of the degrees appearing to diminish as they approach the pole, are opposed to the figure of the earth being exactly a homogeneous or oblate ellipsoid; but its approximation to that figure is so close, that calculations based upon it are not affected by the supposed slight difference. The proximity of the extreme stations to mountainous districts was supposed to have been partly the cause of this discrepancy, as the attraction of high land, by affecting the plummet of the Zenith Sector, might have vitiated the observations for the difference of latitude between two stations. A survey was undertaken by Dr. Maskeylene solely to establish the truth of this supposition, the account of which is published in the "Philosophical Transactions" for 1775. A distance of upwards of 4000 feet was accurately measured between two stations, one on the north and the other on the south side of a mountain in Perthshire. The difference of latitude between these extremities of the measured distance was, from a number of most careful observations, determined to be $54^{\prime \prime} \cdot 6$. Geodesically this arc oughe to have been only $42^{\prime} \cdot 9$, showing an error of $11^{\prime \prime} \cdot 7$, due to the deflection of the plummet.

[^75]: * More than an entire degree (about 100 miles) was actually measured on the ground in Pennsylvania, by Messrs. Mason and Dixon, with wooden rectangular frames, 20 feet long eacb, laid perfectly level, without any triangulation. Page 10, "Discours Próliminaire, Base du Système Mótrique," and " Philosophical Transactions" for 1768.
 \dagger The stars whose meridional altitudes are observed for the determination of the latitude should be selected among those passing through, or near, the zenith of the place of observation, that the results may be as free as possible from any uncertainty as to the amount of refraction. With proper care and a good instrument, the latitude for so important a purpose ought to be determined within one second of space, unless local causes interfere to affect the result.

[^76]: *The French Commissioners, however, having in their calculations employed $\frac{1}{337}$ as their value of the earth's compreasion, now known to be incorrect, the metre, strictly speaking, can no longer be so defined. The determination of the value of the English standand,-the yard, -has been recommended by the commissioners appointed in 1841 for the restoration of the tandards of weight and measures after the injury done to the original atandard by the burning of the House of Commons in which it was deposited, to be effected by joint reference to the three standards extant upon which most reliance can be placed; viz., those belonging to the Royal Society ; the Royal Astronomical Society; and the Board of Ordnance; instead of haring recourse to the standard previously established by act of Parliament, of the length of a pendulum vibrating seconds at a fixed temperature in the latitude of London. Mr. Baily states this length at the level of the sea, in vacuo, at the temperature of 62° Fahr., by Sir G. Shuckburgh's scale, to be $39 \cdot 1393$ inches.

[^77]: - Francourr's " Géodeaie," p. 132; Airy's " Figure of the Rarth," p. 199.
 + No lese than 3900 observations were made for the determination of the latitude of Pormentera.
 \ddagger Perpendiculars to the meridian in a sphere cat the equator in two points diametrically opposite, but not in an ellipeoid of revolution, or in an irregular apheroid.

[^78]: * See also Francceur's " G6odesie," p. 208.
 + In cases where the difference of longitude between the two stations can be ascertained by means of signals, or by the interchange of chronometers, as explained in the next chapter, the measure of the angle \mathbf{P} may be obtained with great accuracy.

[^79]: - The steps by which this formula is arrived at are shown at page 346 of the "Corps Papers," where also will be found examples of aximuths calculated by it on the survey of the boundary alluded to.

[^80]: * Major Robinson states as much as 40 miles. See the narrative of his operations, 2nd and 3rd Numbers of the "Corpe Papera"

[^81]: *The sun's change of declination is given for every hour in the first page of each month in the Nautical Almanac.

[^82]: *The repeating circle here spoken of, is a reflecting circle, having the power of repetition. For the determination of latitudes and longitudes on surveys of the magnitude of the Ordnance Survey of Great Britain, or for very important and delicate geodeaical operationa, the Zenith Sector, Altitude and Aximuth Instrument, and Portable Transit are employed. This latter, though properly an observatory instrument, can be used upon a stand formed by the stump of a large tree, or by three or four strong posts driven into the ground, supporting a top, on which the transit is placed. A rough pedestal of masonry or brick-work of course answers the mame purpose, great care being taken to secure its steadiness, and prevent its

[^83]: being affected by the movement of those about it, to ensure which, a sort of detached platform upon posts will be found efficient. Solid rock is considered not so suited for the foundation of this sort of pedestal as sand, or other species of earth, on account of its more readily conveying tremulous vibrations to the instrument. Transits of from 20 to 30 inches focal length were thus used upon the survey (in 1845) of the North American Boundary, a tent made of fine canvas being contrived to protect the lights from the wind.

[^84]: - See the tenth chapter of Woodhouse's "Astronomy" for the explanation of the method of obtaining the constant of refraction, and the different values of this quantity, generally eatimated at 57".
 † For a further explanation of Parallax in a more general sense, 200 Sir J. F. Herschel's " Aetronomy," p. 47.
 \ddagger At least 5000 million times the diameter of the globe.

[^85]: *When several observations are taken, the necesity for this correction can be obviated by observing alternately the upper and lower limb.

 + In using the tangent screw, a perceptible difference is found between a progressive and a retrograde motion-the latter had better always be avoided. A difference is also found in different parts of the length of the acrew.

[^86]: * For a most lucid explanation of this varying equation, see Woodhouse's "Astronomy," chap. xxii., commencing at page 537; and also Vince's "Astronomy," \&c.
 + For the causes of this almost imperceptible variation in the length of a sidereal day, see Woodhouse, page 106 ; there is, in fact, a mean and an apparent sidereal day.

[^87]: - See Table 8 of Lunar Tables, page 188 of Dr. Pearson's "Astronomy." Riddle's Table, page 154, includes the corrections both for Parallax and Refraction, and is useful for "clearing the lunar distance" to be hereafter explained.
 + All quantities in the Nautical Almanac are calculated for Greenwich time; allowance must therefore be made, where necessary, for difference of longitude, which is the same as difference of time.
 \ddagger The augmentation of the moon's semidiameter for every degree of altitude is given in Table 7 of Dr. Pearson's "Lunar Tables." Altitudes taken with an artificial horizon are obviously double thowe observed above the sensible horizon.

[^88]: *The number of corrections required, and the necescary dependence upon Lunar tables, render an altitude of the moon less calculated for determining the latitude than one either of the sun or a star.

[^89]: * See "Corps Papers," vol. iii. page 328, where will also be found examples worked out in detail, of latitudes thus obtained on the survey of the North American Boundary.

[^90]: - This of course is only applicable to northern latitudes. In the southern hemisphere there is no star sufficiently near to the south pole to be made available in thus determining the latitude.

[^91]: - A portable transit placed in the plane of the prime vertical, instead of that of the meridian, of course affords the same facility for thus determining the latitude. The stars selected should have their declinations less than the latitude of the place, but by as amall a quantity as possible.
 † Table 7. Baily's Astronomical Tables and Pormule.

[^92]: *The most favourable time for observing single, or absolute, altitudes of the sun or a star, to obtain the local time, is when they are on or near the prime vertical, since their motion in altitude is then most rapid, and a slight error in the assumed latitude is not of so much consequence. The corrections for the refraction, however, are then often considerable. The same observation will of course give the azimuth Z, and also the variation of the needle, if the magnetic bearing of the star, or of either limb of the sun, is taken by another observer at the same moment as the altitude. This will be further explained.

[^93]: - The logs. of A and B will be found in table 14.

[^94]: * It is usual to have several chronometers on board, and to take the mean of those most to be depended upon. If one varies considerably from the others it is rejected.

[^95]: * Flashes of gunpowder upon a metal plate are visible at night for a very considerable distance, upwards of 40 miles,-this method is far superior to firing rocket,-the quantity may be from 4 to 16 drachms or more for moderate distances, and a quarter of a pound for long ones.

[^96]: * On board H. M. S. Beagle, employed as a surveying vessel principally on the coasts of Australia and Van Diemen's Land, there were at one time as many as twenty-one first-rate chronometers.
 \dagger This should be done directly after the error of the standard chronometer has been tested by observations with the transit instrument.

[^97]: * The time occupied by light in travelling from the sun to the earth is also ascertained by means of the eclipses of Jupiter's satellites.

 The difference of distance the light has to travel from Jupiter to the earth, on the occasion of an eclipse of one of the eatellites, happening when they are in opposition or in conjunction, is evidently the major axis of the earth's orbit. This difference has been ascertained to be $16^{\text {m }} 26^{\circ} \cdot 4$, which gives $8^{\text {m }} 13^{\circ} \cdot 2$ for the time occupied by light in passing from the sun to the earth.

 The distance of the san from the earth was determined by means of the transit of Venus over the sun's disc.

[^98]: *These altitudes, if not observed, can be calculated when the latitude is known; by which method more accurate results are obtained.

 + Dr. Pearson enumerates no less than tweenty-four astronomers who have published different methods of facilitating the "Clearing the Lunar Distance."

[^99]: - The interval of time past 9 p.m. might of course have been found by a common proportion, without the aid of prop. logarithms.

[^100]: - Obtained from Mr. E. K. Horn.

[^101]: - The time of the moon's transit compared with that observed at, or calculated for, another meridian, would be sufficient data for ascertaining differences of longitude; but by making a fixed stur the point of comparisun, we obvinte any error in the position of the instrument, and also of the clock.

[^102]: * For a more rigid method of computing the diffarence of meridiana by lunar transits, see Baily's Formulæ and Problems, pp. 239 to 247.

[^103]: * The method of ascertaining the direction of the meridian with an altitude and azimuth instrument, or a large theodolite, has been already described at page 155.

[^104]: - In an Observatory, the principal uses to which a transit is applied, are the oblaining true time, and the determination of right ascensions-very excellent directions for using and adjusting a portable transit for the determination of longitudes, \&c., drawn up by Mr. Airy, will be found in the Narrative of the North American Boundary, by Major Robineon, from which one example is given at the end of this chapter, to show the form there adopted for recording transit observations.

[^105]: * Riddle's tables are for clearing the lunar distance, and the corrections are for both parallax and refraction.

[^106]: These tabular forms can of course be varied to suit different localities, where different instruments are used, or where other periods of observation may be preferred. Those given above are recommended by Sir J. Herschel where only three daily readings are recorded.
 reading should always be recorded, leaving all corrections, for index errors, temperature of the mercury (for which a column chas of temperature. Its actual subsequently applied. The thermometer should be hung for observation out of doors, in a perfectly-shaded situation, but otherwise fully exposed, care being taken that it is not so placed as to be affected by reflected rays from water, buildings, or light-coloured hard soil, or by radiated heat from its proximity to the ground. The self-registering thermometer should be fastened so as to admit of one end being detached and lifted up, to allow the indexes to slide down to the
 extremities of the fluid columns, which is better than using a magnet for the purpose. These instruments are unfortunately very liable to get out of order.

[^107]: G. Woodrall and Son, Printers, Angel Court, Skinner Strect, London.

